University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 30

1 The Diffie-Hellman Problems

Last time we showed an encryption scheme based on the hardness of deciding quadratic
residuosity. Unfortunately, this scheme (as currently defined) only allows encryption of
1-bit messages! Even worse, the scheme is inefficient: encrypting a single bit results in a
ciphertext of length k (where this might be on the order of 1024 or so). An expansion factor
of k is typically too inefficient to use.

Today, we will see an encryption scheme (based on a relatively strong — but reason-
able — cryptographic assumption) with expansion factor 2. Furthermore, the scheme will
immediately allow encryption of long messages. As usual, we will begin by introducing and
formalizing our hardness assumptions, then construct a scheme, and then prove security of
the scheme.

For the remainder of this topic, we will be working over a finite, cyclic group G. Since
G is cyclic, this means there is a generator g € G for which G = {¢°,... ,g‘G|_1} (recall
that ¢/ = 1 = ¢° so the cycle repeats at that point). Note that because g is a generator,
log, h is well-defined for any h € G as the unique integer z in Z g for which g” = h.

Given G, we may define a number of problems; if these problems are hard we may
formalize these as cryptographic assumptions. We discuss some of these problems now.

Discrete logarithm problem. The discrete logarithm problem is the following: given
(random) generator g and random element h € G, compute log, h. If this problem is
hard, we say the discrete logarithm assumption holds in G. Note that it is always “easy” to
compute discrete logarithms with probability 1/|GJ: simply guess a random element in Z g,
and this will be the correct answer with probability 1/|G|. Thus, if we want the discrete
logarithm to be “hard”, it will have to be the case that |G| is large.

Computational Diffie-Hellman (CDH) problem. This problem is the following: given
random generator ¢ and random elements hi,he € G, compute g{l°8sh1)(10gs h2) (i.e., if
h1 = ¢® and hy = ¢¥ the output should be ¢g*¥). If this problem is hard, we say the CDH
assumption holds in G.

Before continuing, we give an example. Consider the group Z3; = {1,...,10} under
multiplication. Since 11 is prime, it is a fact that Z7; is cyclic (for those who have had
some more advanced algebra, this is because Z]; is a field and the non-zero elements of a
finite field form a cyclic group). In this case, it can be verified that 2 is a generator. So,
an instance of the CDH problem might be: given 2, 7, and 9, compute 2(logs 7)(logs 3) Qince
27 =7 and 2% = 9, the correct answer is 279 mod 10 — 93 — g

We may immediately note that the CDH assumption is stronger than the discrete log-
arithm assumption. In particular, the CDH assumption implies the discrete logarithm
assumption, as the following claim shows:

Claim If the discrete logarithm problem is “easy” in G then the CDH problem is “easy”
in G.

Proof Assume the discrete logarithm problem is easy in G, so that there is an efficient
algorithm A that computes discrete logarithms with some probability e (over choice of g
and element h). We may then construct the following algorithm A’ for the CDH problem:

A'(g, h1, h2)
Run A(g, h1) to get output z
if g¢* = hy output hj
otherwise, simply abort

Note that A’ can always tell whether A has output the correct answer by computing g* to
see whether this matches h;. Also, A’ outputs the correct answer whenever A outputs the
correct answer (since ho = g'°%s "2 the output of A’ satisfies h§ = gl108g h1)(logg h2)y g - A
outputs the correct answer with probability € and if the discrete logarithm problem is easy
(i.e., € is large) then so is the CDH problem. []

Decisional Diffie-Hellman (DDH) problem. Motivated by the CDH problem, define
CDHg(h1, ho) as gl198g 71)(108g h2) -~ The DDH problem is the following: given four elements
(g, h1, ho, h3) (where g, as usual, is a generator), determine whether hz = CDHy(h,, ho) or
not. In particular (we define this problem more formally since we will use it to prove security
of an encryption scheme, below), define a Diffie- Hellman tuple to be (g, h1, ho, CDHy(h1, hs))
and define a random tuple to be (g, h1, ha, h3) (where hs will be random and independent of
hi,hs). Then the DDH problem is to distinguish between random tuples and Diffie-Hellman
tuples.

More formally, we may say that the DDH problem is (¢, €)-hard if for all algorithms A
running in time ¢ we have:

|Prlz,y « Zig : Alg,9%,9",9%) = 1] = Prlz,y,2 « Zig : Alg,9%,¢%,9°) = 1]].

Note that the first tuple in the above expression corresponds to a Diffie-Hellman tuple,
while the second corresponds to a random tuple.

We may immediately note that the DDH assumption is stronger than the CDH assump-
tion. In particular, the DDH assumption implies the CDH assumption, as the following
claim shows:

Claim If the CDH problem is “easy” in G then the DDH problem is “easy” in G.

Proof Assume the CDH problem is easy in G, so there is an efficient algorithm A that,
given g, hi, ho, outputs CDHg(h1, ko) with probability e. We may then construct the follow-
ing algorithm A’ for the DDH problem:

Al(ga hy, ha, h‘3)
Run A(g, h1, h2) to get output hf
if h% = h3 output 1
otherwise, output 0

Note that now there is no way for A’ to verify whether A has output the correct answer or
not (why?).

Let’s analyze the output of A’. When (g, h1, ha, h3) is a Diffie-Hellman tuple, A’ outputs
1 iff A outputs the correct answer. Since this happens with probability €, we have:

Priz,y Zig : A'(9,9%,9%,9™) = 1] = e

On the other hand, when (g, h1, h2, h3) is a random tuple, A’ outputs 1 iff A happens to
output hf = hs. Since hs is random and independent of hy and hg, this happens exactly
with probability 1/|G|. So:

Pr[z,y,z « Zig : A'(9,4%,9%,9%) = 1] = 1/|G].

The difference in probabilities is then € — 1/|G|. So, if € is much greater than 1/|G|, then
A" can distinguish between Diffie-Hellman tuples and random tuples easily. (Note that
e < 1/|G| does not constitute “breaking” CDH; it is easy to achieve success probability
1/|G| for the CDH problem by simply “guessing” a random group element!) [|

Thus, we have shown that the DDH assumption implies the CDH assumption which in
turn implies the discrete logarithm assumption. In general, the converse of these statements
is not true. There are groups in which the discrete logarithm problem is conjectured to be
hard but the DDH problem is known to be easy, and there are also groups in which the
CDH problem is conjectured to be hard but the DDH problem is known to be easy.

2 Application to Secure Encryption

With this machinery in place, we can now construct a more efficient public-key encryption
scheme. Given a fixed group G, we define the El Gamal encryption scheme [1] as follows:

1. K chooses a random generator g € G and a random number z € Zg. It then computes
h = ¢g®. The public key is (g, h) and the secret key is z.

2. The message space will be the group itself. To encrypt a message m € G, the sender
picks a random r € Z|g and sends ciphertext (g", h"m).

3. To decrypt a ciphertext (A, B), the receiver computes m = B/A®. (For any group
elements ¢, h', the notation g'/h' simply means ¢'(h')~1.)

We verify that decryption is done correctly. Since (A, B) = (¢", h"m) for some r, we have:

B h™m h"m h™m

_— = = = =m.

Az (g")* (¢%)" W
We may immediately note that for the scheme to be secure, at the minimum we will require
the discrete logarithm problem to be hard in G (if not, then anyone who knows the public
key (g,h) can compute z = log, h and learn the secret key). In fact, the security of the
scheme relies on the stronger DDH assumption in G. We will give a proof of security for El
Gamal encryption next time.

References

[1] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory 31(4): 469-472 (1985).

