University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 31

1 El Gamal Encryption

Again, we will let G denote a finite, cyclic group. Recall the DDH assumption in G: we say
the DDH problem in G is (¢, €)-hard if for all algorithms A running in time ¢ we have:

|Priz,y « Zig : Alg, 9%, ¢%,9™) = 1] = Prla,y, 2 < Zig : Alg,9%,9",97) = 1]].
We also recall the description of the El Gamal encryption scheme we gave last time:

1. K chooses a random generator g € G and a random number z € Z g . It then computes
h = ¢g®. The public key is (g, h) and the secret key is z.

2. The message space will be the group G itself. To encrypt a message m € G, the sender
picks a random 7 € Z g and sends ciphertext (g", h"m).

3. To decrypt a ciphertext (A, B), the receiver computes m = B/A®. (For any group
elements ¢', h', the notation g’'/h' simply means g'(h')"1.)

As we noted last time, clearly the encryption scheme is insecure if the discrete logarithm
problem is easy in G. However, it is not enough for the discrete logarithm problem to be
hard in order for the scheme to be secure; in fact, we need to assume the stronger DDH
assumption in G. However, the DDH assumption will be sufficient to prove the El1 Gamal
encryption scheme secure, as we now show:

Theorem 1 If the DDH problem is (t,€)-hard in G, then the El Gamal encryption scheme
is (t, 2€)-secure against ciphertext-only attacks.

Proof Assume we have an adversary A which can “break” the security of El Gamal
encryption; namely, there exist two messages mg, m; for which (informally):

‘PI‘[C — EPK(m()) : A(PK, C) = 0] - PI‘[C — SPK(ml) : A(PK, C) = 0]| = 4. (1)

We will show that § must be small. In particular, we show how to use adversary A to
construct an algorithm A’ which can solve the DDH problem with probability §/2. Since
we know that the DDH problem is (¢, ¢)-hard, we must have § < 2¢ and we are done.

We first re-write equation (1) in an equivalent form (we have done this before so we do
not repeat the derivation here):

|2 Pr[b+ {0,1}; C < Epr(myp) : A(PK,C) =b] — 1| =4.

Now, define algorithm A’ for the DDH problem as follows:



Al(ga hla h2, h3)

Set PK = (g,h1)

b+ {0,1}

set C' = (hQ, h3 . mb)

run A(PK,C) to get output b’

if b =10/, guess 1 (this will represent the guess “Diffie-Hellman”)
otherwise, guess 0 (this will represent the guess “random”)

Let z % log, 1, def log, h2, and 2 def log, h3. Note the following:

e PK is always a valid public key with corresponding secret key z (of course, neither A
nor A’ know z, but this is irrelevant).

e If 2 = rz (i.e., (g,h1,ho,hs) is a Diffie-Hellman tuple), then the ciphertext C is
a legitimate encryption of message mp. This is so because C is then of the form
(g",9"" - myp) = (g", h} - mp). Thus:

Priz,r + Zg : A(g,g",9",9"") = 1] = Pr[b + {0,1}; C + Epk (myp) : A(PK,C) = b].

e On the other hand, if z is uniformly distributed, independent of x and r, then the
ciphertext C is (with high probability) neither an encryption of mg nor m;. In fact,
in this case the second component of the ciphertext (h3 - mp) is uniformly distributed
in G, independent of mg, m1, or b. Thus, even if A is all powerful it cannot possibly
output b’ = b with probability any different from 1/2. This implies:

Priz,r,z < Zig : A'(9,9%, 9", 9°) = 1] = 1/2.

Thus:
|PI‘[£E,T‘ A Z\G : Al(g’gw’gr,grw) = ] - PI'[iE,’I‘,z & Z|(G{ : Al(g’gm’gr’gz) = 1”
= |Pr[b« {0,1};C « Epk(msp) : A(PK,C) =b] — 1/2]
= §/2
< e
We conclude that § < 2e, proving the theorem. |

2 El Gamal Encryption in Practice

The above proof of security did not rely on any properties of group G other than the fact
that it was a finite, cyclic group in which the DDH problem was “hard”. Thus, all we need
to do is find a finite, cyclic group in which the DDH assumption is believed to hold and we
have a secure encryption scheme! We give here one example of such a group.

We mentioned in an earlier lecture that the multiplicative group Z; (for p prime) is a
cyclic group. Even better, the discrete logarithm problem in this group is believed to be
hard (for large p). Unfortunately (as you will show), the DDH assumption does not hold in
this group, making it unsuitable for the E1 Gamal encryption scheme.



We need a slightly more complicated example. Let p = 2¢ + 1 where p and g are both
prime. Let G denote the set of quadratic residues in Zj. Since we know that exactly half
the elements of Zj, are quadratic residues, we have |G| = (p—1)/2 = ¢. It is not too difficult
to show that G is a group (under multiplication), and only a little harder to show that
it is in fact a cyclic group. It is also easy to identify elements of this group (or, for that
matter, to choose random elements in this group) since it is possible to efficiently determine
whether elements z € Z; are quadratic residues or not. Finally, the DDH assumption is
believed to hold in this group. This group is most commonly used to instantiate the El
Gamal encryption scheme.

There are other examples of cyclic groups (most well-known are those based on elliptic
curves) in which the DDH assumption is believed to hold. We stress that as long as the
DDH assumption is believed to hold (and as long as multiplication in the group can be done
efficiently), the structure of the group is unimportant as far as the security of the El Gamal
encryption scheme is concerned.

3 Stronger Notions of Security

Our treatment of public-key encryption parallels our treatment of private-key encryption.
In the private-key case, we first gave a definition of security against ciphertext-only attacks
and showed a construction of a scheme secure with respect to this definition. We then
considered a definition of security against chosen-plaintext attacks (that is, security in
the sense of left-or-right indistinguishability) and showed that this was a strictly stronger
definition. Namely, there exist schemes secure against ciphertext-only attacks which are
definitely not secure in the sense of indistinguishability (an example of such a scheme is the
one-time pad). What happens in the public-key case?

Recall the left-or-right oracle that we used also when defining security of private-key
encryption. This oracle is indexed by a bit b and a public key PK (output by some key
generation algorithm for a public-key encryption scheme). The oracle LRy px takes two
inputs; LRy px(mo, m1) returns Epx(myp), where this encryption is done randomly each
time the oracle is accessed. With the definition of this oracle in place, we may give the
following equivalent definition of security against ciphertext-only attacks:

Definition 1 Public-key encryption scheme (K,E,D) is (t, €)-secure against ciphertext-only
attacks if for all adversaries A running in time t we have:

2. Pr[(PK,SK) + K;b + {0,1} : AtRorc()(PK) = 0] — 1] < ¢,

where A may only query the LR oracle a single time.

Note that A — in addition to having oracle access to LR — is also explicitly given PK as
input because we are in the public-key setting. (A’s access to LR is as a “black box”, and
thus A cannot automatically determine PK [or, of course, b| from its interaction with the
oracle; it is for this reason that PK is explicitly given to A.)

This naturally leads us to a definition of security in the sense of left-or-right indistin-
guishability. As inthe private-key case, this definition also corresponds to security against
chosen-plaintext attacks, and also security when multiple messages are encrypted under the
same public key.



Definition 2 Public-key encryption scheme (K,E,D) is (t,€)-secure in the sense of indis-
tinguishability if for all adversaries A running in time t we have:

2-Pr[(PK,SK) + K;b + {0,1} : AtRrx()(PK) = 0] —1] < ¢,

where A may only query the LR oracle an unlimited number of times (of course, the number
of queries will be fewer than t).

Clearly, this definition is no weaker than the definition of security against ciphertext-only
attacks. In fact, a somewhat surprising result is that these two definitions are in fact
equivalent! Thus, any public-key encryption scheme secure against ciphertext-only attacks
is automatically also secure in the sense of indistinguishability. We give a formal statement
of this result, and a full proof of this assertion, next time.



