University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 32

1 Indistinguishable Public-Key Encryption

Last time, we gave a definition of security in the sense of indistinguishability for public-key
encryption schemes. This definition is exactly analogous to the definition we gave in the
case of private-key encryption. In the case of private-key encryption, indistinguishability
was strictly stronger than security against ciphertext-only attacks. This is not the case for
public-key encryption, as we show here. Specifically:

Theorem 1 Let (K,&,D) be a public-key encryption scheme which is (t,€)-secure against
ciphertext-only attacks. Then (K,E,D) is (t,Le)-secure in the sense of indistinguishability
(where the adversary is assumed to access the LR oracle £ times).

Thus, as long as € is small, and £ is within reason (of course, we always must have £ < t),
the scheme is secure in the sense of indistinguishability. Typical values might be ¢ = 280
and £ < 218 or so (even if ¢ is much higher), implying that Ze is still sufficiently small.
Proof We prove the theorem for the case £ = 2, and leave the general case to the reader.
Note that even the case £ = 2 is already a vast improvement over the private-key case,
where the one-time pad (for example) was (t,0)- secure against ciphertext-only attacks, but
not (t,1 — €)-secure (for any € > 0) in the sense of indistinguishability, even for £ = 2.

Let A be an adversary attacking the encryption scheme in the sense of indistinguishabil-
ity, and making two queries to the LR oracle. Let (mq,m}) and (mg,m}) denote the pairs
of messages that A submits to the LR oracle (i.e., (m1,m!) are the messages submitted
the first time and (mg,m)) are the messages submitted the second time). Then we are
interested in bounding the following:

‘2 -Pr[(PK, SK) « K;b < {0,1} : ARurP()(PK) = p] — 1‘

Pr[ALRo,PK(-,-) (PK) — 0] _ PI’[ALRLPK("')(PK) _ 0]‘
= |Pr[A(PK,Epk(mi),Epk (m2)) = 0] — PrlA(PK,Epk (m}), Epk (mhy)) = (]|,

where we have been slightly informal (in particular, (PK, SK) are randomly generated in
each experiment, and Epgx(m) refers to a random encryption of message m).

Before giving the details of the proof, we provide a high-level overview. Note that the
final expression above is equal to:

|Pr[A(PK, Epk (m1),Epk (m2)) = 0] — Pr[A(PK, Epk (m}), Epk (m2)) = (]

+ Pr[A(PK,Epk(m}),Epk (m2)) = 0] — PrlA(PK, Epk (m), Epx (my)) = 0]| (1)
< |Pr[A(PK,Epk(m1),Epk(ms)) = 0] — Pr[A(PK,Epk(m)),Epk(ms)) =0]|  (2)

+ |Pr[A(PK, Epk (m)), Epk (m2)) = 0] — Pr{A(PK, Epk (m)), Epk (my)) = 0]| .(3)
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Using the fact that the encryption scheme is secure against ciphertext-only attacks, we will
bound Expressions (2) and (3).

We construct an adversary A’ mounting a ciphertext-only attack against the encryption
scheme. Here, A’ is given a ciphertext C which is either an encryption of m4 or of m/:

A'(PK,C)
compute Cy < Epi(my) (note that A’ can do this since it knows PK)
run A(PK, C,C5)
output whatever is output by A

By definition of A’:

|Pr[A"(PK, Epx (m1)) = 0] — Pr[A(PK, Epx (m1)) = 0]]
= |Pr[A(PK, Epk(m1),Epk (my)) = 0] — Pr{A(PK, Epr(m}), Epk (m2)) = 0]]
< €,

where the final inequality holds since the encryption scheme is (¢, €)-secure against ciphertext-
only attacks.

We now construct adversary A”, also mounting a ciphertext-only attack against the
encryption scheme. Here, A” is given a ciphertext C' which is either an encryption of msy or
mh:

A"(PK,C)
compute Cy < Epk(m)) (again, A” can do this since it knows PK)
run A(PK,C4,C)
output whatever is output by A

By definition of A”:

|Pr[A'(PK,Epk (m2)) = 0] — Pr[A'(PK, Epk (my)) = 0]
= |Pr[A(PK, Epk(m),Epk (my)) = 0] — Pr{A(PK, Epr(m}), Epk (m3)) = 0]]
S 6’

where, again, the final inequality holds since the encryption scheme is (t, €)-secure against
ciphertext-only attacks.

Thus, both Expressions (2) and (3) are bounded by ¢, implying that Expression (1) is
bounded by 2¢ and proving the theorem. |

An important corollary of this theorem is that once we have a secure public-key en-
cryption scheme for messages of length ¢, we may immediately use the scheme to encrypt
arbitrary-length messages by breaking messages to be encrypted into a sequence of £-bit
blocks (padding if necessary) and encrypting each block separately (using fresh randomness
each time). Note that this is “equivalent” to sequential encryptions of ¢-bit messages, and
is therefore secure by the above theorem.

We note the crucial difference between the private-key case and the public-key case. In
the proof above, adversaries A’ and A” can generate (random) encryptions of mg and m/,
respectively, because they are explicitly given the public key PK. The is not the case for
private-key encryption, where the adversary does not get to learn the key and therefore
cannot generate encryptions of other messages.



1.1 The Value of Theorem 1

Theorem 1 is very useful for proving the security of public-key encryption schemes. Out
ultimate goal will always be to construct an indistinguishable encryption scheme. Yet in
analyzing (and proving security of) such a scheme, we need only prove security against
ciphertext-only attacks — a much simpler task. Once we have done so, however, we may
immediately apply Theorem 1 to show that the scheme is in fact secure in the sense of
indistinguishability. This makes the design of provably-secure schemes easier.

2 Hybrid Encryption

We have now seen two secure public-key encryption schemes. Let us look at the efficiency
of each.

e The scheme based on quadratic residuosity was originally defined only for encryption of
1-bit messages. But it should be clear (since, by Theorem 1, the scheme is secure in the
sense of indistinguishability and hence secure when multiple messages are encrypted)
that £-bit messages can be encrypted by simply concatenating (random) encryptions
of each of the individual bits. Note that each encryption of a single bit results in a
k-bit ciphertext (where k is the length of the modulus N), meaning that encrypting
an £-bit message results in a k£-bit ciphertext. In terms of computational efficiency,
encryption of each bit requires 1-2 modular multiplications each taking time O(k?)
(this can be improved, but it is not relevant here).

e The El Gamal encryption scheme had improved communication efficiency. Namely,
encrypting a k-bit message resulted in a ciphertext of length 2k, for an expansion factor
of only 2. Computationally, however, the scheme is not much of an improvement
over the previous scheme. In particular, encrypting a k-bit message requires two
exponentiations each taking time O(k?®). Thus, the amount of computation per bit
is roughly the same as in the previous scheme. (Note: In fact, this comparison is
slightly inaccurate, since different key sizes k might be used for the different schemes.
However, the thrust of the argument is clear.)

In absolute terms, if we compare the efficiencies of public- and private-key encryption we
see that private-key encryption (say, using a block cipher) is roughly 1000 times faster
than public-key encryption. Again, this is only a rough estimate, as it depends on which
public- and private-key schemes are being compared. Yet it is fair to say that private-key
encryption is roughly 3 orders of magnitude faster than public-key encryption.

Clearly, then, we want to avoid using “public-key cryptography” to transmit very long
messages. But how can we do so while retaining the benefits of public-key encryption? Next
time, we discuss hybrid encryption which is a method for obtaining the best of both worlds.



