University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 34

1 Public-Key Encryption From General Assumptions

Thus far, the security of all the public-key encryption schemes we have seen (i.e., the
Goldwasser-Micali encryption scheme based on quadratic residuosity and the El Gamal
encryption scheme based on the DDH assumption) are based on specific number-theoretic
assumptions. In this lecture, we define the more general notion of a trapdoor permutation,
give some examples of (assumed) trapdoor permutations, and show how to construct a
secure public-key encryption scheme from any trapdoor permutation.

Why do we care about a result of this sort? From a theoretical point of view, it is
interesting to characterize public-key encryption based on what primitives are necessary in
order to construct provably-secure schemes. This can also lead to greater understanding
of public-key encryption, which may yield other benefits. From a more practical point of
view, a generic result of the form “trapdoor permutations imply the existence of public-
key encryption schemes” allows us to instantiate the trapdoor permutation in a number
of different ways. In other words, when someone develops a new (candidate) trapdoor
permutation, we do not have to come up with (and prove secure) a new construction of a
public-key encryption scheme; instead, we simply use the generic result to immediately give
a scheme that we then know is secure. Note that basing results on as general an assumption
as possible also protects us in case, for example, factoring turns out to be easy!

1.1 Trapdoor Permutations

Informally, recall that f is a one-way permutation if the following hold:
e f is a permutation.
e f is efficiently computable.
e f is hard to invert (on a randomly-chosen input).

A trapdoor permutation g will be defined similarly with one exception: although g will
be hard to invert in general, there is some trapdoor information which enables efficient
inversion of g. Because of the availability of trapdoor information, our treatment of trapdoor
permutations will be slightly different from our treatment of one-way permutations, as we
will see in the following definition.

Definition 1 A (t,e¢)-trapdoor permutation is a triple of poly-time algorithms (K, f,Inv)
such that:



e K is a randomized key gemeration algorithm which outputs a pair (k,td) where td is
called a trapdoor.

e f is a deterministic algorithm which takes as input a key k and an input x € Dy (we
refer to Dy as the domain of key k); it returns an output y = f(k,z) € Dx. (We

denote f(k,-) by f(-).)
e Inv takes as input the trapdoor td and an input y and returns a value x.
Furthermore, (K, f,Inv) satisfies the following:

e For all (k,td) output by K and all x € Dy we have: Inv(td, fu(z)) = z. (For this
reason, we simply denote Inv(td,-) by fk_l() but it is important to remember that
efficiently computing f, L is only possible with td.) In particular, this implies that for
all k output by K, fx is a permutation on Dk.

e f is efficiently computable. More formally, given any k output by K and any x € Dy,
it is possible to efficiently compute fy(x).

e f is hard to invert without the trapdoor (even when given k). Namely, for all algo-
rithms A running in time t we have:

Pr(k,td) < K;z < Dy;y = fx(z) : Ak,y) =z] <e.

(Again, with the trapdoor fy is easy to invert [in other words, f, Lis easy to compute/
using algorithm Inv.)

It is worth noting that every trapdoor permutation is also a one-way permutation. We give
a few examples of trapdoor permutations that we have already seen.

EXAMPLE 1: RSA We have discussed the RSA permutation before, but we now explicitly
present it in a form compatible with the above definition. Let K be an algorithm that
chooses a random modulus N (which is the product of two primes) and also chooses e, d
such that ed = 1 mod ¢(N). The key k consists of (N, e) while the trapdoor td is simply
(N,d). We have Dy = Dy, = Z}; and

o fu(z) = fn,e(z) =2° mod N.

o Inv(td,y) = Inv((N,d),y) =y mod N = fy ' (y).

EXAMPLE 2: SQUARING We also show how the Rabin squaring permutation satisfies Def-
inition 1. Let N = pq where p,q are prime and p = ¢ = 3 mod 4. We noted in a previous
lecture that the function fy(z) = z? mod N is a permutation over QRy. So, our key gen-
eration algorithm X will be an algorithm that chooses a modulus N which is a product of
primes p,q with p = ¢ = 3 mod 4. The key k is simply N, the trapdoor is the factorization
(p,q) of N, and Dy = Dy = QRy. We have already defined our function fy(-); we also
note that inversion can be done efficiently (i.e., square roots can be efficiently computed
modulo N) when the factorization of N is known.



1.2 Public-Key Encryption from Trapdoor Permutations

It may seem “obvious” that trapdoor permutations and public-key encryption schemes
are essentially equivalent. This intuition is wrong! For one thing, not every public-key
encryption scheme is based on a trapdoor permutation. In fact, neither of the schemes we
have seen so far are based on trapdoor permutations: the hardness of deciding quadratic
residuosity clearly does not give a trapdoor permutation directly! and the DDH assumption
is also unrelated to trapdoor permutations. In fact, it is believed that public-key encryption
is weaker than trapdoor permutations, in the sense that the former may exist even though
the latter do not.

Secondly, it is not trivial to construct a provably-secure public-key encryption scheme
from any trapdoor permutation. The “obvious” way of doing so, in which message m is
encrypted by computing fx(m) (and decryption of C is done by having the receiver — who
has the trapdoor — compute f~1(C)) is completely insecure: this is a deterministic scheme,
so cannot possibly be secure as a public-key encryption scheme.

Before we give a secure construction of a public-key encryption scheme from any trap-
door permutation, we recall the notion of a hard-core bit that we saw previously in the
context of one-way permutations. Let f be a one-way permutation over some domain D.
We say that h : D — {0,1} is a hard-core bit for f if (informally) it is “hard” to predict
the bit h(z) (with probability much better than 1/2) given only f(z); more formally:

Definition 2 Let f be a permutation over some domain D. We say that h: D — {0,1} is
a (t,€)-hard-core bit for f if, for all algorithms A running in time t we have:

[Priz < D;y = f(z) : A(y) = h(z)] - 1/2| < e.

We may give an entirely analogous definition for a hard-core bit of a trapdoor permutation.
We do not give the formal definition here, but informally we say that keyed function h (with
hk : Dx — {0,1}) is a hard-core bit for trapdoor permutation f if it is hard to compute
hk(x) (with probability much better than 1/2) given fy(z) and k, but without the associated
trapdoor td for k.

We saw in a previous lecture that for every one-way permutation f, there is a hard-
core bit h for f. The same result holds for trapdoor permutations. We now show how to
construct a public-key encryption scheme from any trapdoor permutation. Let (K, f, Inv)
be a trapdoor permutation, and let h be a keyed function which is a hard-core bit for f.
The encryption scheme is defined as follows:

e The key generation algorithm runs K to obtain a pair (k,td). The public key consists
of k and (a description of) h; the secret key is the trapdoor td.

e To encrypt a single bit b using public key pk = (k, h), choose a random r € Dy and
send (fk(r), h(r) @ b).

e To decrypt ciphertext (C1,C5) using the secret key, compute b = Co @ hy(f, Liey)).
(Note that this can be done efficiently since the secret key contains td.)

'"However, the quadratic residuosity assumption does imply that factoring is hard, which gives rise to the
Rabin trapdoor permutation described above. This is more of an “accident” than anything else.



It is not hard to see that the encryption scheme always gives correct decryption.

Theorem 1 If h is a hard-core bit for trapdoor permutation (K, f,Inv) then the above is a
secure public-key encryption scheme.

Although we do not give a full proof of this theorem here, we hope the reader will be
convinced by the following informal argument. Recall in the case of a one-way permutation

f with hard-core bit h that the function G(r) « f(r) o h(r) is a pseudorandom generator.
This means that for a random r, the string f(r) o h(r) “looks random” (in a way made
formal by the definition of pseudorandomness). A completely analogous result holds when
f is a trapdoor permutation. So, a “secure” way to encrypt a message m would be to
compute m @ (fx(r) o h(r)). While this works for private-key encryption when r is pre-
shared (indeed, this was one of the first secure schemes we showed), this does not work for
the case of public-key encryption, where the sender and receiver do not pre-share r. How
to we fix this?

In effect, we allow the receiver to compute r by sending f(r) alone (i.e., without xor’ing
f(r) with any part of the message). The sender can now xor the 1-bit message with the
final bit h(r) of the “pseudorandom string” f(r),h(r). In the case of pseudorandomness,
we saw that having f(r) did not allow an adversary to predict h(r) (with probability better
than 1/2). So too, here, an adversary who sees f(r) cannot predict hy(r) (with probability
better than 1/2). So hy(r) can be used as a “one-time pad” to encrypt the 1-bit message.

1.3 Encrypting Longer Messages

We have already seen in previous lectures that a secure public-key encryption scheme for
1-bit messages allows encryption of arbitrary-length messages as well (by concatenating
encryptions of each bit of the message). But this is going to be inefficient, both in com-
munication (there will be k£ + 1 bits of ciphertext per bit of the message, where k is the
input/output length of fy) and computation (one evaluation of fy is required for each bit
of the message). The hybrid approach we saw in a previous lecture will help, but only if
we first use the public key scheme to encrypt sufficiently-many bits (i.e., enough to use as
a key for a private-key scheme).

Hopefully, the discussion of the previous section (comparing the encryption scheme to
the construction of a PRG) motivates the following, more efficient construction. In the
case of PRGs, we saw that the construction G(r) = f¢(r) o h(f*(r)) o--- o h(r) is a PRG
stretching its input by £ bits. We can use the same technique for public-key encryption!
Namely, to encrypt an £-bit message bib, - - - by, we pick a random r, compute C; = fy(r),
and

Cy = (hu(FKEH(r)) o huc(f2(r)) 0 -+ 0 hue(r)) @ (b - - by).

The transmitted ciphertext is Cy,Cy. (Key generation is done as before, and decryption
should be obvious.)

How efficient is this scheme? Unfortunately, the computation required is still one eval-
uation of fy per bit of the message, but the ciphertext length is now k + £ for an /-bit
message (in the original scheme, the ciphertext would have been (k + 1)£ bits long for an
¢-bit message).



