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1 Signature Schemes

Let’s review what cryptographic protocols we have covered thus far. In the context of
symmetric-key (or private-key) cryptography, we have discussed encryption protocols and
message authentication schemes. The former provide secrecy while the latter provides in-
tegrity. We next discussed public-key encryption which is the direct counterpart of private-
key encryption, although it allows many people to secretly communicate with one person
(who has published a public key) rather than “just” allowing two people (who have shared
a key in advance) to secretly communicate. What is the counterpart of message authenti-
cation?

In the case of message authentication, we saw that two people who had shared a key
in advance can use a message authentication scheme to determine whether future messages
they receive are indeed from each other (and not maliciously inserted by someone else).
The public-key analogue is a digital signature scheme. Here, one person (called the signer)
publishes a public key which, as usual, is then assumed to be known by everyone else. The
signer keeps an associated secret key which he can then use to sign messages. The resulting
signature on the message is then verifiable by anyone who knows the signer’s public key.
We give a formal definition and then a representative example.

Definition 1 A triple of poly-time algorithms (KC,Sign,Vrfy) is a signature scheme (over
some message space M) if the following hold:

1. K is a randomized algorithm which outputs a public key pk and a secret key sk.

2. Sign is a (possibly) randomized algorithm which takes a secret key sk and a message
m € M and outputs a signature o. We denote this by o < Signg(m).

3. Vrfy is a deterministic algorithm which takes a public key pk, a message m € M, and
a (purported) signature o and outputs 1 or 0. We denote execution of the algorithm
by Vrfypk(m, o). A 1 indicates that the signature is valid and a 0 indicates that the
signatures is invalid.

We require that for all (pk, sk) output by K, all m € M, and all o output by Signg(m), we
have Vrfyy (m, o) = 1.

The final condition just means that all signatures issued by the legitimate signer are recog-
nized as valid by anyone with access to the public key for the signer.

We give a brief example of how a signature scheme can be used. Say a bank B has a
public key PKp (they can publicize this key in one of the ways we discussed earlier, like



putting it in the newspaper). Assume this bank then wants to certify a statement m of the
form “As of Jan. 1, 2002, X has $100 in her account”. They can use their signature scheme
to generate a signature o on this message. The bank can give this signature to X who can
now take it and use it to convince anybody else (as long as they know the bank’s public key
PKp) that the bank indeed certified statement m.

Of course, the preceding example doesn’t make much sense unless we also define a
notion of security for a signature scheme. (In particular, if X could have forged the bank’s
signature, then showing a signature proves nothing.) Our definition of security will be
analogous to the one we gave for message authentication schemes, and represents a very
strong notion of security. Informally, it should be the case that regardless of what messages
are signed by the signer, no one else (without the secret key) should not be able to forge a
valid signature on any new message in the name of the signer. We model this by defining
a signing oracle Signg(-) with which an adversary can interact; when the adversary sends
any message to this oracle the oracle responds with the signature on that message. The
adversary can interact with this oracle as often as he likes, and the adversary’s goal is to
come up with a valid signature ¢ on a message m that was never explicitly queried to the
oracle (representing the fact that this message was never signed by the real signer). More
formally:

Definition 2 A signature scheme (K, Sign,Vrfy) is (t,€)-secure if for all adversaries A
running in time t we have:

Pr|(pk, sk) < K; (m, o) < AS&"0)(pk) : Vrfyp(m,0) =1Am ¢ M] <,
where M denotes the set of messages submitted by A to Signg(+).

Note that the adversary is explicitly given the public key and, in particular, can always
verify whether a particular o is indeed a valid signature on a message m. This is in contrast
to the case of message authentication where the adversary never learns the secret key and
therefore does not even know if what he outputs is a forgery or not.

1.1 Digital Signatures vs. Message Authentication

It is worth stressing two important differences between digital signatures and message au-
thentication:

Public verifiability Digital signatures are publicly verifiable. That is, anyone who knows
a user’s public key can verify whether that user has signed a particular message. In
contrast, message authentication schemes only allow the recipient to verify that the
message originated from the sender; others have no way of verifying this fact.

Non-repudiation Digital signatures provide non repudiation in the sense that they bind
the signer to the signed message. The signer himself cannot later deny (say, to a
judge) signing the message; his signature “binds” him just as a real signature would
on a legal document. On the other hand, message authentication does not provide
this at all. For one thing, there is no way to even convince a judge that a message
was authenticated without revealing the secret key. Even at that point, there is no



way to know that this secret key was actually the agreed-upon key that the sender
and receiver used. Finally, even if a judge definitively knows the secret key used all
this proves is that either the sender or receiver authenticated the message (since both
these parties have the same secret information, there is no way to tell which party
actually authenticated the message).

1.2 Perfectly-Secure Digital Signatures?

Can perfectly-secure signature schemes exist? We saw that in the case of message authen-
tication, perfectly-secure schemes could be constructed as long as we limit the number of
authenticated messages the adversary can request. Might something similar work in the
case of signatures?

We show that no sort of perfectly-secure signature schemes can exist. In particular, an
unbounded adversary can always forge a valid signature on any message of his choice even
without seeing any previously signed messages. To see this, consider an adversary A who is
given the public key pk and wants to forge a signature on message m. If signatures are, say,
k bits long then the adversary can simply try every possible string o of length k until it finds
one for which Vrfyp(m,o) = 1. Then o is a valid signature on m! Note a crucial difference
between the case of digital signatures and message authentication is that the adversary can
verify correctness of the signature ¢ before it outputs o; this cannot be done for message
authentication schemes, which is why perfectly-secure schemes are possible in that setting.

1.3 The Suggestion of Diffie and Hellman

Diffie and Hellman suggested the following way to implement digital signature schemes
based on any trapdoor permutation. Let (K, f,f !) be a trapdoor permutation. Their
suggestion was the following:

e Key generation consists of running X to generate key k and trapdoor td. The public
key is k and the secret key is td.

e To sign message m € Dy, the signer (who has the trapdoor) computes o = f, ' (m).

e To verify signature o on message m, check whether fy(o) ~ m. Note that anyone
with access to the public key can verify this.

In fact, this is exactly how “textbook” RSA signatures work: the public key is modulus NV
and public exponent e and the secret key is exponent d such that ed = 1 mod ¢(N); signing
a message m € Z% is done by computing ¢ = m? mod N (and verification is done in the
obvious way).

Unfortunately, this approach is not secure! We now explore why. For one thing, note
that no matter what trapdoor permutation is used, an adversary can always forge valid
signatures on new messages by choosing arbitrary o € Dy, computing m = f(o) (recall
the adversary knows k since this is the public key), and claiming that ¢ is a signature on
m. Now, m may not correspond to a meaningful message, but we do not want to make
any assumptions about what sorts of things a signature scheme will be used to sign. So, a
forgery on any message still “counts” as a forgery, and the scheme is not at all secure.



The situation is even worse when specific trapdoor permutations are used. For example,
in the case of RSA we can note that an adversary who obtains signatures from the real signer
can forge a signature on a new message of his choice. Thus, if an adversary wants to forge
a signature on message m the adversary can do the following: find m1, mo € Z% such that
mimo = m mod N. Ask for signatures o; and oo on messages mi and msy, respectively.
The adversary outputs forgery 0 = 0102 mod N on the message m. To see that this is
indeed a forgery, note that

0® = (0109)¢ = of0§ = mymg = m mod N.

2 Construction of Secure 1-Time Signature Schemes

In fact, constructing secure signature schemes is very difficult; it is fair to say that no truly
satisfactory provably-secure solution is yet known. As a start, we can consider relaxing the
definition of security to see what can be achieved then. As in the case of message authenti-
cation, we consider the case when the adversary is limited to getting a single signature on
a message of his choice before having to forge a new signature. Schemes which are secure
against this form of attack are called 1-time signature schemes.

The first provably-secure 1-time signature scheme is due to Lamport. This scheme can
be based on any one-way function f, and works as follows:

e Assume we want to be able to sign messages of length £. To generate keys, choose
2{ elements x1,0,Z1,1,--.,%¢0, T¢,1 Uniformly at random from the domain of f. Then

compute y10 = f(£1,0),y11 = f(®1,1)s---5Ye0 = [(®00),ye,1 = f(2g1). The public
key is (41,0,Y1,1,- - -, ¥e,0,Y¢,1) and the secret key is (71,0,1,1,---,¥,0,Y¢,1)-

e To sign message m = by -+ - by, simply let the signature be
(T1 by s T2hyy - - - s Tl by)-

e To verify a signature (x1,...,xy) on message m = by - - - by, check whether

? ?

? ? ?
f(m1) = y1p,5 f(2) = Y2805+ f(T0) = Yep,-
(Only if all of these are true is the signature considered valid.)

We will see a proof of security for this scheme next time.



