
University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 39

1 The Random Oracle Model

At the end of the last lecture, we introduced the random oracle model and distinguished it
from the standard model in which we have been working until now. We review and extend
the discussion here.

• The random oracle model assumes a publicly-accessible oracle (“black box”) that ev-
eryone can access. This oracle is assumed to implement a completely random function.

• In practice (random oracles do not exist in the real world!), we will instantiate the
random oracle with a cryptographic hash function.

• From a theoretical point of view: no (efficiently-computable) hash function can pos-
sibly be a random function! (A true random function would have a description that
is exponentially large!)

• From a practical point of view: better to have a construction which can be proven
secure in the random oracle model than to have a construction with no proof at all.

• In practice: if an adversary can break a scheme which was proven secure in the random
oracle model, then the hash function used to instantiate the random oracle must not be
“good enough”. So a proof of security in the random oracle model gives us confidence
in the scheme, since it seems that the only way to break the scheme (in the real world)
involves finding some weakness in the hash function used to instantiate the random
oracle.

• In theory: no formal statement along these lines seems possible. In particular, it might
be possible to break a scheme which was proven secure in the random oracle model
without finding any specific weakness in the hash function used. Furthermore, there
are (artificial) examples of schemes that can be proven secure in the random oracle
model, but which are insecure when the random oracle is replaced by any specific
hash function.

Hopefully, the above discussion captures some of the tension inherent in using the ran-
dom oracle model (indeed, use of this model to prove security remains controversial among
cryptographers). To summarize: a proof of security in the random oracle model is no guar-

antee of any security in the real world; on the other hand, a proof of security in the random
oracle model is better than no proof at all, and the only efficient schemes we (currently)
know how to construct are provably secure only in the random oracle model. So if we want
efficient schemes with some evidence (but not guarantee!) of their security, it seems we
must work in the random oracle model.

1



2 An Efficient Signature Scheme in the RO Model

As an example of how the random oracle model can be useful, we show here that the original
suggestion of Diffie and Hellman for constructing signature schemes can be modified and
proven secure in the random oracle model. Let (K, f, Inv) be a trapdoor permutation. (As
usual, if td is the trapdoor associated with a particular key key, then we denote Invtd(·) by
f−1

key(·), where it is clear that f−1

key can be efficiently evaluated only by someone who knows
td.) We construct a signature scheme as follows:

• To generate a public/secret key, run K to generate (key, td). The public key is key

and the secret key is td.

• Let H : {0, 1}∗ → Dkey (recall Dkey is the domain of fkey) be a hash function modeled
as a random oracle. To sign message m, output σ = f−1

key(H(m)).

• To verify signature σ on message m, check that fkey(σ)
?
= H(m). (Remember that

everyone is assumed to have access to the random oracle H).

The following theorem shows that this construction is indeed secure. Pay careful atten-
tion to the proof of security, which relies in an essential way on the fact that H is indeed a
random oracle. (The proof simply fails when H is any concrete function.)

Theorem 1 If (K, f, Inv) is a (t, ε)-secure trapdoor permutation, then the above signature

scheme is (t, qhε)-secure, where qh represents the number of queries an adversary makes to

the random oracle H.

Proof Assume there is some adversary A which outputs a forgery for the above construc-
tion with probability δ. We use this adversary to construct an algorithm A′ that inverts the
trapdoor permutation. A′ is given a key key and a random element y, and tries to compute
x such that fkey(x) = y. It proceeds as follows:

A′(key, y)
Set PK = key

Pick a random index i∗ ∈ {1, . . . , qh}
Run A(PK)
Answer the ith query of A to oracle H as follows (let mi denote this ith query):
if i = i∗, return y
otherwise, pick random ri ← Dkey, compute ansi = fkey(r), and return ansi

When A requests a signature on message m:
find i such that m = mi (see discussion below)
if i = i∗, abort; otherwise, return ri as the signature

When A outputs its forgery (m,σ)
If m = mi∗ then output σ; otherwise, abort

In the above description, we make a few assumptions about A: (1) we assume that before
A ever asks for a signature on message m, it has already queried H(m); (2) we assume that
A never submits the same message to H more than once (indeed, there is no reason for it to

2



do so, as the answer it would get back remains the same); (3) we assume that if A outputs
a forgery on message m, then at some point it has queried H(m). It is not hard to see that
these assumptions may be made without loss of generality, since given any adversary A we
can modify it to get an adversary Ã that satisfies the above assumptions and has the same
probability of forgery (although Ã might now make at most qh + qs +1 queries to H, where
qs is the number of signatures requested by A).

We note the following about the above simulation:

• As long as A′ does not abort, the simulation for A is perfect. The outputs of oracle
H are random and independently distributed, as required for a random oracle.

• A′ sets things up so that it is able to answer all signature queries of A unless A ′ asks
for a signature on mi∗ . Note that the response of A′ to all other signature queries is
indeed a correct signature.

• Since the output (m,σ) of A can only be a forgery if A never requested a signature
on m, and since m = mj for some j (by assumption), it must be the case that there
is at least one index j for which A never requests a signature on mj. Since i∗ is
chosen at random, with probability at least 1/qh we have j = i∗. When j = i∗ (and A
outputs a valid forgery) then σ is indeed an inverse of y and A′ succeeds in inverting
the trapdoor permutation.

To summarize the above discussion, the probability that A′ correctly outputs an inverse is
at least 1/qh times the probability that A outputs a forgery; hence, A′ outputs the desired
inverse with probability at least δ/qh. Since the trapdoor permutation is assumed to be
(t, ε)-secure we must have δ ≤ qhε, completing the proof.

Again, we stress that it was vital to the proof that A′ have the ability to “fix” the
outputs of H. This is fine in the random oracle model (as long as A′ fixes the outputs in
an independent and uniform way) since the output is supposed to be random, anyway. But
it should be clear that the proof fails once we commit to any specific function H (and A ′

loses the ability to fix outputs as it likes).

3


