University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 41

1 An Improved Signature Scheme in the RO Model

Last time, we presented an efficient signature scheme which could be proven secure in the
random oracle model. Signing a message m required hashing m to a random element of
Dx (using the random oracle) and then inverting the trapdoor permutation on that random
element; thus, the signature on m is simply f_'(H(m)) (where H is the random oracle).
The signature scheme is known as the “Full-Domain Hash” (or FDH) scheme.

We saw in the previous lecture that if the trapdoor permutation was (¢, €)-secure, then
the FDH signature scheme constructed based on that permutation is (¢, gy€)-secure, where
qn, represents the number of oracle queries made by an adversary. While this is progress
since we at least have a measure of provable security, the result is not all that great. Since
gn, corresponds to the number of times the adversary evaluates the hash function H, since
evaluating H is typically very efficient, and since evaluations of H can be done by the
adversary off-line (and without the signer’s knowledge), g, might well be very large. A
dedicated adversary might well be able to have ¢, ~ 2°0. In this case, using even a very
secure trapdoor permutation with € ~ 2760 would result in a not-very-secure signature
scheme (since 20¢ ~ 1!). Of course, we can simply use a trapdoor permutation with lower
€, but this may lead to a less efficient scheme.!

Here, we show that not all is lost. For the particular case when the trapdoor permutation
used is the RSA permutation, a better proof of security is possible. We first state the
theorem, then briefly discuss the implications, and finally give a proof.

Theorem 1 Assume that RSA is a (t,€)-secure trapdoor permutation. Then the FDH sig-
nature scheme instantiated with RSA is (t, eqs€)-secure, where g5 is the number of signatures
the adversary requests from the signer (and e = 2.7 is the base of the natural logarithms).

Thus, an adversary attacking FDH based on RSA has probability of forgery g¢se rather
than gre as would be expected from the proof of security for the case of general trapdoor
permutations. In practice, g; < ¢p; to see why, notice that computing signatures takes
longer and more importantly must be done by the signer. It is much more difficult for
an adversary to get a signer to sign 1000 messages of the adversary’s choice than for the
adversary to evaluate a hash function 1000 times. So, Theorem 1 indicates that for practical
purposes using RSA with € ~ 270 ig perfectly fine.

Proof We give a high level overview of the proof before presenting the details. As usual,
we will take an adversary A attacking the signature scheme and use this to construct an

! As an example, inverting RSA for 1024-bit moduli might correspond to € ~ 27%°. But obtaining e ~ 2%
might require using RSA with 2048-bit moduli, which would be less efficient.

adversary A’ which inverts RSA. For the proof of the previous lecture (for the case of a
general trapdoor permutation), we can describe the strategy of A’ as follows: let g denote
the number of hash queries made by A. Pick a random index ¢ € {1,...,q,} and set the
output of H in such a way that (1) A’ can answer signature queries corresponding to every
query to H except the i*" query and (2) if A forges a signature corresponding to the 7!
query to H, then A’ computes the desired inverse. Since i is chosen at random (and since
A cannot ask for signatures on messages corresponding to all queries to H), the probability
that A outputs a forgery at the desired point in at least 1/gp.

We could improve the probability that A outputs a forgery for a message that helps A’
if we allow A’ to choose multiple indices in {1,...,q;} at which to “embed” the value that
it wants to invert. But in general this is not possible: for example, if A’ sets y as the output
of H on more than one input then H no longer acts as a random oracle (in particular, A
should see collisions in H will negligible probability). But for the case of RSA we can embed
our instance in more than one place and thereby increase our chances of success. We give
the details now.

Again, we are given algorithm A which forges signatures for FDH instantiated with RSA
with some probability §. We use A to construct an algorithm A’ which tries to invert a
given RSA instance (i.e., given N, e, y, tries to compute z such that z¢ = y mod N).

A'(N,e,y)
Set PK = (N,e); run A(PK)
When A asks for H(m,;), answer as follows:
with probability a:
pick r; - Z’ and return r{ mod N
(call m; of this sort type 1)
with probability 1 — a:
pick 7; <= Z7% and return y - r{ mod N
(call m; of this sort type 2)
When A asks for a signature on message m;:
if m; is type 1, return r;
if m; is type 2, abort
when A outputs forgery (m;,o):
if m; is type 1, abort; otherwise, output o /r;

We may note the following: (1) as long as A’ does not abort, the simulation it provides for
A is perfect. In particular, the outputs of H are uniformly and independently distributed
(for type 1 m;, this is clear; for type 2 m; it follows from the fact that 7{ mod N is random
so multiplying by y still gives a random value). Furthermore, (2) if A’ does not abort and
if A outputs a valid forgery, then A’ outputs the correct inverse of y. This is so since if A
outputs a forgery it means that 0 = H(m;) =y r{ mod N so that (¢/r;)* = y mod N.

All that remains is to determine the probability that A’ does not abort. Each signature
query of A can be answered by A’ with probability exactly « (since A’ can answer the query
only if it corresponds to a type 1 message). When A outputs its forgery, this “helps” A’
(and A’ does not abort) with probability exactly 1 — a. Putting this together shows that
the total probability that A" does not abort is a% (1 — «).

We now maximize this probability. Taking the derivative and setting equal to zero gives:

gs—(gs+1)a =0, or @ = ¢s/(gs+1). Plugging this in shows that in this case the probability

of not aborting is:
(qs) qs 1 B 1 (1 1) gs+1 e—l
gs +1 qs+1 qs gs+1 QS’

where this holds for reasonably large g5 (and e here is the base of the natural logarithm).
Putting everything together, we see that the probability that A’ inverts the given RSA
instance is (at least) e"1d/q; (i.e., the probability that A’ forges multiplied by the probability
that A’ does not abort). Since this can be at most € we obtain § < egse, completing the
proof. |

L

