University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 42

1 Public-Key Encryption in the RO Model

So far, we have seen examples of (very) efficient signature schemes in the so-called random
oracle (RO) model. Can we use the RO model to construct efficient public-key encryption
schemes as well?

As motivation, we remind the reader that the most efficient public-key encryption scheme
based on trapdoor permutations (e.g., RSA) in the standard model works as follows: the
receiver generates a key key and associated trapdoor td for a trapdoor permutation. The
public key is key and the secret key is simply td. There is also a (publicly-known) hard-core
bit h : Dyey — {0,1} for the trapdoor permutation. To encrypt the single bit b the sender
chooses a random 7, computes C; = fiey(r) and Co = h(r) ® b, and sends C;,C,. To
decrypt, the receiver first recovers r from C; (using the trapdoor) and then recovers the
message by computing b = h(r) @ C2. Note that this requires one evaluation of f for each
bit of the original message. In class we also discussed encryption schemes which reduce
the ciphertext length (for longer messages) but these schemes have the same computational
efficiency as above (i.e., one evaluation of f per bit of original message).

Unfortunately, we can essentially do no better than this' using arbitrary trapdoor per-
mutations in the standard model. It is also not known whether it is possible to do sub-
stantially better using, e.g., RSA in the standard model. This has motivated researchers to
consider what sort of efficiency might be possible in the random oracle model.

We now present a simple and very efficient scheme. As before, let (K, f,Inv) be a
trapdoor permutation family, and let H : {0,1}* — {0,1}¢ be a random oracle. The scheme
works as follows:

e To generate keys, the receiver runs K to generate public key key and secret key the
associated trapdoor td.

e To encrypt message m € {0, 1}4, the sender chooses random r € Dyey and computes
C1 = fkey(r). The sender also computes Cy = H(r) & m and sends Ci, Cs.

e To decrypt ciphertext C1, Co, the receiver computes (using the trapdoor) r = fk;;(Cl)
and then obtains the message as Cy = H(r) ® Cy. (Recall that H is publicly accessible
by the receiver, any possible senders, and the adversary as well.)

It should be clear that this scheme has correct decryption. The parallel with the encryption
scheme in the standard model (given previously) should also be obvious. Finally, the scheme

! For those who are interested, I will point out that there are methods with slightly better efficiency but
even these do not yield a truly practical scheme.

is fairly efficient: if £ = 160 then up to 160 bits of the message can be encrypted using only
a single evaluation of f. (Note also that encrypting 160 bits is enough to allow the use of
hybrid encryption for messages longer than 160 bits, since the “private key” set up need
only be 128 bits long anyway.)

Before giving the proof of security for the above scheme, we give some intuition and a
caveat. For the intuition as to why the scheme is secure, note that when an adversary sees
ciphertext Cy, Cy (encrypted under public key key) the adversary has no information at all

about the underlying message unless it knows H(r) (where r def fk;;(Cl)). And because we
model H as a random oracle, the adversary has no information at all about H(r) unless it
has explicitly queried H at point r. However, to do so the adversary would have had to
completely determine r from Cy which is equivalent to inverting the trapdoor permutation.
Since the occurs with only small probability, the scheme is hence secure (we give a more
formal proof below).

The caveat of the construction (and the proof) is that there is no “real world” hash
function for which the above construction is provably secure. The construction can only
be proven secure when H is treated as a random oracle. In practice we may not worry
about such things since no actual attack against the scheme is known when using common
hash functions for H. But from a theoretical point of view this state of affairs is a little
unsettling.

Theorem 1 If (K, f,Inv) is a (t,€)-secure trapdoor permutation, then the above construc-
tion of a public-key encryption scheme is (t,€)-secure in the sense of indistinguishability in
the random oracle model.

Proof Assume we have an adversary A and messages mg, m1 for which:

|Pr[(C1, C2) < Ekey(m1) : A(key, C1,C2) = 1]
— PI‘[(Cl, CQ) — 5key(m0) : A(key, Cl, CQ) = 1” =4

(where the probabilities are taken over randomly generated public key key). We show how
to construct an adversary A’ breaking the security of the trapdoor permutation. A’ will be
given a random key key and a random element y, and will try to find fk;; (y)-

A'(key, y)
Set C1 =y
Cy + {0, 1}4
Run A(key, C1,Cs), answering H-oracle queries of A as follows:
On the i** query z;, check whether frey(zi) = y; if so, output z; and stop
Otherwise, simply choose random g; < {0, 1}* and return y;

(We assume without loss of generality that A never asks the same H-oracle query twice;
note that it gains nothing by doing so.) Clearly, if A’ outputs anything then it succeeds in
finding fk;}l,(y) And the probability that A’ outputs anything is exactly the probability that
A ever queries H on input fk;;(y). We may also note that A’ provides a perfect simulation
for A (up until the point — if any — that A’ stops): the output of H is independently and
uniformly distributed, and the ciphertext and public key have the required distribution (Cy

is equal to fyey(r) for some random [unknown] r and Cy is uniformly distributed which is
fine as long as A has not yet queried H(r)).

Let Find be the event that A ever explicitly queries H(r), where as above we have

r 2 fk_e;(Cl). Note that, by what we said above, the probability that A’ inverts y is exactly

Pr[Find]; thus, we must have Pr[Find] < e by the security of the trapdoor permutation.
Conditioning on event Find gives:

PI[(Cl, CQ) — Ekey(ml) : A(key, 01, 02) = 1]
= Pr[(C1,C2) Ekey(m1) : A(key, C1, Co) = 1|Find] - Pr[Find]
-I—PI‘[(Cl, CQ) — Ekey(ml) : A(key, 01,02) = 1|m] - Pr[m],

with a similar expression for the case of encrypting mg. The key point is:

PI‘[(Cl, CQ) — Ekey(ml) : A(key, Cl, CQ) = 1|m]
= PI‘[(C1, CQ) — Ekey(m()) : A(key, Ch, CQ) = 1‘m],

where (as discussed in the paragraph preceding the proof) this is because H is a random
oracle and so the adversary has no information about H(r) as long as it has never explicitly
queried H(r) (and therefore mg @ H(r) is equally distributed to mq @ H(r) just as in the
case of the one-time pad). Putting everything together gives:

0
= |PI‘[(01, 02) — Skey(ml) : A(key, Cl, 02) = 1‘Find] PI‘[Find]
— Pr[(C1, Cy) ¢ Ekey(myg) : A(key, C1, Cy) = 1|Find] Pr[Find]|
< Pr[Find]
< e
This completes the proof. |

2 Identification Protocols

We have now finished with our coverage of the essential cryptographic primitives: encryption
and message authentication in the private-key setting, and encryption and digital signatures
in the public-key setting. However, these are not the only uses and applications of cryptog-
raphy. Often they form important building blocks for larger and more complex protocols.
We briefly example one such application here.

Consider the problem of secure identification. Here, we will assume a prover P who wants
to prove his identity to some verifier V. We imagine that P and V at some point securely
establish a common, secret key k. At some later point in time, P (who is communicating
over a network) wants to convince V that it is indeed him. (In fact, this sort of thing occurs
all the time: consider what you do when you log on to your email account.) What sort of
security might we need and how might we design a secure protocol for this task?

One immediate requirement is that an adversary (who does not know the secret key
shared by P and V) should be unable to impersonate P (that is, to falsely convince V that

it is speaking with P). This property should at a minimum hold when the adversary has
never observed any interactions between P and V. It is very easy to come up with a protocol
meeting this definition of security: the protocol consists simply of P sending the key & to
V; V then checks whether this key matches the one it has previously shared with P. Of
course, our gut feeling is that such a protocol should not be considered secure! Indeed, if
an adversary observes a single interaction between P and V, then the adversary learns k
and can later impersonate P at any later point in time! Thus, although the level of security
mentioned above is certainly necessary, it is definitely not sufficient.

Instead, we need to additionally require that an adversary should be unable to imperson-
ate P even if the adversary can observe (eavesdrop on) as many executions of the protocol
between P and V as it likes. It should be clear from the discussion above that the preceding
protocol does not satisfy this notion of security.

How can we now design a protocol secure under this definition? One suggestion is the
following: let (£,D) be a private-key encryption scheme. To identify P, the verifier V
chooses a random value v and sends it to P. The prover P encrypts v using k to obtain
ciphertext C (i.e., computes C < &;(v)) and sends C as its reply. The verifier decrypts
C and checks whether the resulting decryption is equal to v; only then does it accept. Is
such a protocol secure? More precisely, can we give natural conditions on the encryption
scheme such that any encryption scheme satisfying those conditions will make this a secure
identification protocol?

We show here that although the protocol may seem secure, such appearances are de-
ceiving. In particular, even an encryption scheme secure in the sense of indistinguishability
is not enough to make the above a secure identification protocol. This shows the impor-
tance of rigorous proofs of security and of not letting “intuition” be our guide for accepting
constructions as secure. Recall the encryption scheme in which F' is a PRF and a message
m is encrypted by choosing a random r and sending (r, Fi(r) @ m). Recall further that
we proved this scheme secure in the sense of indistinguishability. But consider now what
happens when we use this scheme as part of the identification scheme sketched above.

When the adversary eavesdrops on a single execution of the protocol, the adversary
learns v and the response (r, C'). We claim this is enough to allow the adversary to imper-
sonate P in the future via the following attack: When V later sends v’ to the adversary, the
adversary responds with (r, C ®v®v'). You can check that V will always accept. Thus, the
identification scheme given above is not secure when using an encryption scheme satisfying
any definition of security we have seen thus far.

In fact, we might notice that there is really no reason to be using encryption at all. We
do not care about secrecy here; all we care about is authentication. Thus, it is more natural
to consider using a message authentication scheme as our building block for constructing a
secure identification protocol; we do this as follows: Let (MAC, Vrfy) be a secure message
authentication scheme (for polynomially-many messages). The protocol starts by having V
choose a random value v and send it to P. The prover P than computes tag = MAC(v)
and sends tag to V. Finally, the verifier accepts if and only if Vrfy, (v, tag) = 1.

We leave it to the reader to verify that as long as v is chosen from a large enough space,
this identification protocol is secure.

