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Lecture 5

1 More on One-Way Functions

At the end of last lecture, we showed that multiplication is not a one-way function, since
factoring numbers is “easy” when there is a 3/4 probability that the number is even! Of
course, it is reasonable to assume that multiplication is a weak one-way function, and then
there is a theorem stating that this implies the existence of some (strong) one-way function.
But can we do better and give a more natural construction?

In fact, we can. We do not need to restrict ourselves to functions whose domain is
{0,1}*; instead, we can consider functions over arbitrary domains D C {0,1}* as long as D
is efficiently sampleable. What we mean by this is the following: let D, = DN {0,1}* (i.e.,
Dy, represents strings in D of length k). Then we require that it be possible to uniformly
sample an element of Dy in time polynomial in k. More formally, there exists a PPT
algorithm S such that S(1*) returns a uniformly distributed element in Dy,.

With this in mind, we can now define a one-way function as an efficiently computable
function which is hard to invert in the following sense (you should check that this is equiv-
alent to the previous definition when D = {0,1}*): for all PPT algorithms A there is a
negligible function €(-) such that:

Pr[z < Dy;y = f(z);2' = A(y) : f(z') = y] < e(k).

With these concepts in mind, let’s see how we might turn multiplication into a one-way

function. Instead of allowing the domain of f to be Z x Z (or, equivalenty, {0,1}* if we

parse things appropriately), let’s set the domain D of f to be D D« P, where we let

P C Z be the set of prime numbers. Now we can view Dy as a pair (z,y) of primes each of
length k/2. And in fact it is a very reasonable conjecture that factoring integers N, where
N is a product of two equal-length primes, is “hard” for any polynomial-time algorithm;
more formally (defining Py as the set of primes of length k): for all PPT algorithms A there
is a negligible function €(-) such that:

Prlz,y < Priz=xz-y: A(z) = (z,y)] < e(k).

(Note that because z and y are primes, multiplication is now one-to-one so we do not need
to consider the case when A outputs (z/,y') # (z,v).)

The careful reader will note that we omitted one important consideration: can we in fact
sample from P efficiently? (Equivalently, can we efficiently sample random k-bit primes?)
The answer is yes; we will not give details now, but this will be discussed in the guest lecture
on Monday.



2 Number Theory

We gave a brief review of modular arithmetic, and what it means to compute “modulo n”.

We also introduced the notation Z,, def {0,1,...,n — 1}. We then defined the notion of a
group (see algebra handout), and defined the set:

VAN o {z:1<z <N and ged(z,N) = 1}.
We defined ¢(n) def |Z%|- Note that Z; = {1,...,p — 1} when p is prime and hence
©(p) = p—1. We also showed that if N = pq is the product of two distinct primes p, g then
(N) =|Zy] = (p - 1)(g - 1).
We stated the important fact that, for any IV, the set Z}, can be viewed as a multiplica-
tive group.
We also stated the following important lemma:

Lemma 1 Let m be the order of (finite) group G. Then g™ =1 for any nonzero g € G.

There is a nice (simple) proof for this; see [Ch] for details. This simple lemma can be used to
demonstrate a very useful fact which we state in its own lemma because it is so important:

Lemma 2 Let G be a finite group of order m. Let g € G and x be an integer. Then:

T z mod m

g =9

Proof Let z = 2’ mod m. Then we can write z = km + z'. But now we have ¢* =

gkm+z’ — gkmgm’ — (gm)kgcc’ — (1)kg:c’ — gw" m

2.1 Chinese Remaindering

Let N = pq be a product of two distinct primes. Chinese remaindering is an equivalent
way of viewing Z} as Zj, X Zj. The way this works is as follows: for any element z € Z},
we can view z as (zp,z4) € Z, x Z; where z, = r mod p and 2, = z mod ¢. Let’s look at
a particular example for N = 15 = 3 - 5. Element 7 € Z}; can be written as (1,2) since
7=1mod 3 and 7 = 2 mod 5. Doing this for all elements of the group gives the following
table:

1 < (1,1)
2+ (2,2
4 < (1,4
7T+ (1,2
8 + (2,3)
11 < (2,1)
13 < (1,3)
14 + (2,4



(Note as a sanity check that the number of elements in Z7; is indeed given by 24 = 8.)
Note that each element (pair) of Zj x Zf appears once and only once on the right hand
side above. This suggests that there is a bijection between Z]5 and Z3 x Z5. The Chinese
remainder theorem (which we do not prove here) can be viewed as stating that this is indeed
a bijection for any N which is a product of two primes (actually, the Chinese remainder
theorem is more general and can be extended for N of various other forms). Note also that
the Chinese remainder theorem gives an alternate proof of the value of ¢(N):
@(N) = |Z§| = |Zy x Zg| = |Zp| - |Zg| = (p = 1) - (¢ = 1).

Now one important fact about this alternate representation of Z3; is the following: if
z,y € Ly with ¢ < (zp,74) and y < (yp,yq), then - ymod N < (zp - yp mod p, z4 -
yq mod ¢). This is a very useful fact when doing computation modulo large numbers N:
instead of computing z - y and then reducing modulo N, we can convert z and y to their
alternate representations (z,,z,) and (yp,yq), do our multiplication modulo p and ¢, and
then convert the answer back to an element in Z%;. So if p, g are k-bit primes, then instead
of doing one multiplication modulo a 2k-bit number N, we instead do two multiplications
modulo k-bit numbers. This extends for the case of exponentiation, as we will see next
time.

As a final remark, note that is is “easy” to convert z € Z} to (zy,7,) € Z x Zj (simply
compute the necessary remainders). How can we go in the opposite direction? Well, say
we have found (in advance) values X,Y € Zy such that X « (1,0) and Y «+ (0,1). (We
are abusing notation here, since in fact (1,0) & Z; x Zj since 0 ¢ Z;. This is why we say
X,Y € Zy and not X,Y € Z}..) Then, given (z,,z,) we have:

(xp#”q) :37;0'(1,0)"‘3741'(0’1) =zp- X +z¢-Y,

and this final computation can be done modulo N. As an example in Z7;, we have (1,0) +
10 (since 10 = 1 mod 3 and 10 = 0 mod 5) and (0,1) +> 6. So we can convert (1,3) by
doing:

(1,3) =1-(1,0) +3-(0,1) =1-10+ 3 - 6 mod 15 = 13,

which is the correct answer.



