University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 7

1 More on Chinese Remaindering

Let N = pq, where p,q are distinct primes. We saw last time the notion of Chinese re-
maindering, whereby we can view x € Z} as (zp,7q) € Z, X Zy. We also saw how this
representation might speed up multiplication in Z},. But it can also speed up exponentia-
tion. For completeness, we state the following results:

Fact 1 Let N,p,q as above. Let <> denote the “Chinese remaindering” representation of
an element in Z% as discussed above. Then:

o If x & (zp,2q) and y < (yp,y,) then zy < (zpy, mod p, x4y, mod q) (Note that
computation in the left half of the tuple is always done in Z, and computation in the
right half of the tuple in always done in Zg, so the notation “mod p”, “mod q” is
redundant. From now on, we omit it.)

1 1 71).

o Ifx < (mp,mq) then v & (2,7, 74

ks (xF, 2h).

o Ifx <> (zp,xq) and k is an integer, then 2 Lg

These facts can speed up computations. As an example, consider computing 4'%°® mod 15.
Since 15 = 3 - 5, we can represent 4 as (1,4). Then 41056 = (11056 41056) — (1 (—1)1056) —=
(1,1). To get our final answer, we now just need to convert (1,1) back to an element of Z;.
We gave a technique for doing this last time, but here we can observe that 1 € Zj; has the
property that 1 =1 mod 3 and 1 = 1 mod 5! So our final answer is 1.

We will see below that Chinese remaindering is also a powerful theoretical tool, enabling
us to easily prove many useful theorems.

2 Quadratic Residues

The notion of quadratic residues pops up very often in cryptography. An element a € Zj is
a quadratic residue if and only if it is a square; i.e., if there is an element x € Z} such that
22 = a mod k. We begin by looking at the case k = p, where p is an odd prime. It is a fact
that every element in Zj has either no square roots (i.e., is not a quadratic residue) or has

exactly two, distinct square roots, and we now state and prove this formally.

Lemma 1 Forp > 3 an odd prime, every element a € Z,, has either no square roots or two
distinct square roots in Z,.

Proof Let a € Z,. If a has no square roots, we are done. Otherwise, let = be a square
root of a. Note that —z is also a square root of a (why?). On the other hand, z and —z
are distinct modulo p (this is why we require that p # 2), so a has at least two square
roots. Can there be more? Well, let y be another square root of a. Then 2% = y? and thus
72 —y? = 0. Algebra gives: (z — y)(z +y) = 0. But this has the two solutions y = 4=z
(important note: this makes use of the fact that the equation wz = 0 mod p has solutions
only if w = 0 or z = 0, or both. This is true when p is prime but is not true if p is composite,

as we will see below). []

This lemma also gives us a count of how many quadratic residues there are in Zj;. Since
every square maps to two, distinct elements of the group, exactly half of the elements of Z
must be squares (i.e., there are (p — 1)/2 squares).

We now consider the case k¥ = N, where N = pq is a product of two, distinct (odd)
primes. How many square roots can elements a € Z have now? We show that each element
has either no square roots or exactly four distinct square roots.

Theorem 1 Let N = pq as above. Then an element a € Zy; has either no square roots or
four distinct square roots in 7.

Proof If a € Z} has no square roots, we are done. So, assume ¢ has at least one square
root z. Using Chinese remaindering, let a < (ap,a,) and x < (7,,7,). Since z? = a,
it must be the case that x?) = ap mod p and :ch = ag mod ¢ (by Fact 1). But then a has
three more square roots: (—z,,z,), (p, —%4), and (—zp, —z,) (and these are all distinct,
as argued above for the case p prime). Finally, if ¢ had another square root (yp,y,) then
yg = a, mod p and yg = a, mod ¢ so that y, = £z, and y, = £z, (as argued above for the
case p prime). So these four square roots are the only square roots of a. |

Define QR as the set of quadratic residues in Z7%;. Note that the theorem above implies
that exactly 1/4 of the elements in Z}; are quadratic residues; or |QRy| = |Z}|/4.

(As an aside, note why the proof that there are only two square roots given in the case
of Zy, p prime, fails here. In particular, it is not the case that if zy = 0 mod N then
either £ = 0 or y = 0. As an easy counterexample, note that, for any a,b we have [using
representations|: (a,0) - (0,0) = (0,0) = 0. Also, pg = 0 mod N although p,q # 0 mod N.)

It is the case that square roots modulo a prime p can be computed in polynomial-time
(we may discuss how to do this later in the semester). This allows efficient calculation
of square roots modulo N if the factors of N are known (by application of the Chinese
remainder theorem and Fact 1). We will see below that square roots cannot be computed
in polynomial time modulo N when the factorization of N is not known, unless factoring
can be done in polynomial time.

2.1 Legendre and Jacobi Symbols

Notation has developed for dealing with quadratic residues in modular groups. For elements
in Z; (p prime), define the Legendre symbol as follows:

L,(y) = +1 if y is a quadratic residue modulo p
WY -1 otherwise.

We can extend this definition to the case N = pq (p,q distinct primes), and define the
Jacobi symbol as follows:

IN() = Lp(y) - Lq(y)-

Note that if y is a square in Z}, then we must have Jx(y) = +1. This is so because
if y is a square modulo N, and y < (yp,yq), then y, must be a square modulo p and
yq must be a square modulo ¢ (and hence y is a square modulo both p and ¢). On the
other hand, there are elements y with Jx(y) = +1 which are not quadratic residues; these
are precisely those elements y <+ (yp,y,) where neither y, nor y, are squares (and hence
Ly(yp) = Lyg(yg) = —1).

It can be proved that exactly half the elements in Z% have Jacobi symbol +1, and
exactly half have Jacobi symbol —1. Furthermore, of those elements with Jacobi symbol
+1, exactly half of those are quadratic residues.

An important result is that the Jacobi symbol of y modulo N can be computed efficiently
(i.e., in polynomial time) even if the factorization of N is not known. Thus, if we compute
JIn(z) = —1 we know that = cannot be a quadratic residue. On the other hand, given an
element z for which Jy(z) = +1 and without the factorization of N, no efficient algorithm
is known to determine whether z is a quadratic residue or not. We will use this to build an
encryption scheme later in the course.

3 One-Way Functions from Number Theory

The reason we introduced all this number theory was to present some nice constructions
of (conjectured) one-way functions and permutations. In fact, all known one-way functions
that are used in practice arise from number theory. The reason for this is the nice algebraic
properties that these functions have. This is why we prefer not to use “multiplication”
as our one-way function (which is one-way, as discussed in the previous lecture) based on
hardness of factoring: this function is not a permutation, and does not have “nice” algebraic
properties.

The first function we will introduce is squaring. For a fixed modulus N = pq, where p, g
are distinct primes, define the function fy : Z% — QRny by fy(z) = 22 mod N.! Our aim
is to prove the following;:

Theorem 2 If factoring is hard, then the function fn given above is one-way. (Note that
if factoring is not hard, then fy is decidedly not one-way, since we mentioned previously
that square roots can be efficiently computed if the factorization of N is known).

This will be a cool result (once we prove it...)! We get the benefits of the factoring
assumption (namely, that factoring is one of the problems most widely-believed to be hard)
but also get the benefits of the “nice” algebraic structure of our function.

Since this is our first proof of this sort, we will give some more detail about what it is
that we will actually prove. Our aim is to show that if we have an efficient algorithm A
that can invert fxy (that is, can compute square roots in QR), then we can build another

'If you are bothered by the fact that a fixed N is “hardwired” into fy, you can consider the function
f(x,N) = (2% mod N, N). If you are not bothered, you can ignore this footnote for the purposes of this
class.

efficient algorithm A’ that can factor numbers. Note there are two components to the proof:
we need to construct an algorithm A’ that factors numbers (given an arbitrary algorithm A
that inverts fn) and we also need to ensure that our construction is efficient; that is, that
A’ runs in polynomial time (assuming that A runs in polynomial time).

A little more formally (we will see the full proof next time), assume we have an efficient
algorithm A such that:

Pr[N « CompositeGen(1¥); z « Z%; 2z = 2%y + A(z,N) : 4% = 2] > e(k), (1)

for some (arbitrary) function €(k). A bit about the notation: recall that “+<” refers to
the output of a random process, while “=" either means (on the left side of the colon) to
assignment or (on the right side of the colon) to equality (i.e., are these two things equal?).
In the above notation, CompositeGen refers to some algorithm which, on input 1%, outputs
a k-bit composite number which is a product of two distinct primes. (Typically, it will be
the product of two k/2-bit primes, but the workings of the algorithm are actually irrelevant
here.) We stress that the nature of CompositeGen is irrelevant to the proof of security, so
let’s for now assume we have such an algorithm as a black box.

We want to show how to use A to construct an efficient algorithm A’ for which:
Pr[N « CompositeGen(1¥); (p,q) « A'(N) : pg = N] > €' (k), (2)

where € (k) will be related in some way to e(k). In words: A’ will be given a random value
N output by CompositeGen, A’ will output p, ¢, and the probability that p¢g = N (where
this probability is taken over the entire experiment) is at least €' (k). For our proof, we
will want it to be the case that if e(k) is not negligible, then €' (k) will not be negligible
either. Hence, if there exists an efficient algorithm A satisfying (1) with €(k) not negligible,
then there exists an efficient algorithm A’ satisfying (2) — but this violates the factoring
assumption! (Note: whether or not this actually violates the factoring assumption depends
on our definition of CompositeGen. So what we are really assuming is that there is some
algorithm CompositeGen for which factoring the output of CompositeGen is hard.)
We will see the proof next time. ..

3.1 Making f a Permutation

As defined above, the domain of f is all of Z},, and the range of f is (of course) QR y. It
would be nice if we could somehow restrict the domain of f to QR and thereby make f a
permutation. But how can we guarantee that f is one-to-one when we restrict the domain
in this way? Equivalently, how can we guarantee that for any y € QR y, exactly one of the
four square roots of y is itself in QR N7

We can do so by restricting N to be a product of two primes p, ¢ where p = ¢ = 3 mod 4.
We now prove that the above condition holds for such V.

Lemma 2 Let p be a prime such that p = 3 mod 4. Then L,(—1) = —1 (i.e., —1 is not a
quadratic residue in Zy).

Using this lemma, we now prove:

Theorem 3 Let N = pq where p,q are primes and p = ¢ = 3 mod 4. Then for all y €
QR , exactly one of the square roots of y is also in QR .

Proof Recall that the four square roots of y can be represented as (z,,2,), (—2p,),
(zp, —1¢), and (—xp, —z4) for some z, € Z; and z, € Z. If x) is a quadratic residue in Zj
and 1z, is a quadratic residue in Z7, then (z,, ;) is a quadratic residue in Z}.. Furthermore,
since —1 is not a quadratic residue in either Zj or in Z7, it must be the case that —z; is
not a quadratic residue in Z and simillarly —z, is not a quadratic residue in Zg. So none
of (—xp,24), (zp, —24), Or (—2p, —z4) can be quadratic residues in Z};.

We leave the case when (z,,z,) is not a quadratic residue in Z7}, as an exercise for the
reader. |

