Problem Set 6
Due at the beginning of class on Nov. 14

1. Exercise 7.1.

2. Exercise 7.3.

3. Exercise 7.5.

4. Exercise 7.6.

5. (You can use a calculator that handles modular arithmetic [e.g., bc on unix systems], or write a program for this question. I don’t care what method you use.)

Let \(N = 23701 = 137 \cdot 173 \).

- What is \(\phi(N) \)?
- What is the smallest value of \(e > 1 \) that is relatively prime to \(\phi(N) \)?
- Fix \(e \) as in the previous question. Find \(d \) such that \(ed = 1 \mod \phi(N) \). (Hint: If you think about it, you can find this by simple trial-and-error using a calculator, without having to write a program.)
- Fix \(e, d \) as in the previous question. Take \(x = 201 \) and compute \(y = [201^e \mod N] \). What is \([y^d \mod N]\)?

7. Exercise 7.18.

8. Assume you overhear the following conversation between Alice and Bob:

- Alice says “\(p = 347, g = 4, h_1 = 236 \)”
- Bob says “\(h_2 = 167 \)”

Determine their shared secret. (Note: You can do this by hand using a calculator that does modular arithmetic [e.g., bc on unix systems], or write a short program to solve it. I don’t care what method you use.)

10. Exercise 9.3.