Homework 5

Due at the beginning of class on Nov. 15

When you are asked to compute a result "by hand", you may use a calculator to perform multiplication/division but you may not use a special-purpose computer program.

- 1. The following exercises concern modular arithmetic. Answer them by hand:
 - (a) Compute [46⁻¹ mod 51], using the extended Euclidean algorithm.
 - (b) Solve for x in the following equation: $46x = 49 \mod 51$.
 - (c) Compute gcd(45,51) using the Euclidean algorithm. Does 45 have an inverse modulo 51?
 - (d) The equation $45x = 39 \mod 51$ has the solution x = 2. Does this contradict your result from part (c)?
- 2. Let $N = 55 = 5 \cdot 11$. Answer the following by hand:
 - (a) What is $\varphi(N)$?
 - (b) Say e = 3. Find d such that $(x^e)^d = x \mod N$ for all $x \in \mathbb{Z}_N^*$.
 - (c) Find an $x \in \mathbb{Z}_N^*$ such that $x^e = 2 \mod N$. How many $x \in \mathbb{Z}_N^*$ satisfy this equation?
- 3. The following exercises concern the group \mathbb{Z}_{17}^* . Answer them by hand.
 - (a) Prove that 2 is not a generator of \mathbb{Z}_{17}^* .
 - (b) Show that 3 is a generator of \mathbb{Z}_{17}^* .
 - (c) Compute $\log_3 10$.
- 4. (cf. Exercise 7.13.)
 - (a) Let N = pq be a product of two primes. Show that if N and $\varphi(N)$ are known, then it is possible to efficiently compute p, q. (Hint: derive a quadratic equation [over the integers] for p, q.)
 - (b) Say N = 18,830,129 and $\varphi(N) = 18,819,060$. Solve for p and q. (You may use a calculator, but not a factoring program. Show your work.)