Homework 6
Due at the \textit{beginning} of class on Dec. 1

1. (Exercises 7.15/7.16) Prove formally that hardness of the DDH problem relative to \(G \) implies hardness of the discrete logarithm problem relative to \(G \).

2. Say Alice and Bob run an execution of the Diffie-Hellman key-exchange protocol. They work in the group \(G \) consisting of the squares modulo 23; the order of \(G \) is 11. They use generator \(g = 4 \).

 (a) Show that \(g = 4 \) does indeed generate a group of order 11.

 (b) Alice chooses private exponent \(x = 6 \) and Bob chooses private exponent \(y = 9 \).

 What is the transcript that results from this execution, and the shared key Alice and Bob compute?

3. (cf. Exercise 10.1) Prove that perfectly-secret public-key encryption (i.e., where security holds against an unbounded adversary) is impossible, even for 1-bit messages.

4. (Exercise 10.14) Consider a version of padded RSA encryption, where encryption of \(m \) is done by setting \(\bar{m} = (0^k || r || 00000000 || m) \) for random \(r \) and then computing the ciphertext \(c = [\bar{m}^e \mod N] \). Show a chosen-ciphertext attack on this scheme.