Problem Set 2 Due at *beginning* of class on Mar. 11

- 1. (Pseudorandom generators.) Let $\{G_k : \{0,1\}^k \to \{0,1\}^{3k}\}$ and $\{H_k : \{0,1\}^k \to \{0,1\}^{3k}\}$ be PRGs. Prove (formally) or disprove (via explicit counterexample) whether the following are *necessarily* PRGs:
 - (a) $\{G'_k: \{0,1\}^{2k} \to \{0,1\}^{3k}\}$ defined by:

$$G'_k(x_1 \circ x_2) \stackrel{\text{def}}{=} G_k(x_1) \oplus G_k(x_2).$$

(b) $\{H_k': \{0,1\}^k \rightarrow \{0,1\}^{3k}\}$ defined by:

$$H'_k(x) \stackrel{\text{def}}{=} G_k(x) \oplus H_k(x).$$

2. (Pseudorandom functions.) Let $\mathcal{F} = \{F_s : \{0,1\}^k \to \{0,1\}^k\}_{s \in \{0,1\}^k}$ be a PRF. Define $\mathcal{P} = \{P_s : \{0,1\}^{2k} \to \{0,1\}^{2k}\}_{s \in \{0,1\}^k}$ by:

$$P_s(x_1 \circ x_2) \stackrel{\text{def}}{=} (F_s(x_1) \oplus x_2) \circ x_1.$$

Iterating, define $\mathcal{P}' = \{P'_{s_1,s_2} : \{0,1\}^{2k} \to \{0,1\}^{2k}\}_{s_1,s_2 \in \{0,1\}^k}$ by:

$$P'_{s_1,s_2}(x_1 \circ x_2) \stackrel{\text{def}}{=} P_{s_2}(P_{s_1}(x_1 \circ x_2))$$

- (a) Write out a definition of \mathcal{P}' in terms of \mathcal{F} only.
- (b) (Review.) Show that $\mathcal{P}, \mathcal{P}'$ are *permutations* over their inputs.
- (c) (Review.) Show that, given s, P_s^{-1} can be efficiently computed (even if F_s^{-1} cannot). Repeat for \mathcal{P}' .
- (d) Show via explicit attack that \mathcal{P} is *not* a pseudorandom permutation (PRP).
- (e) Show via explicit attack that \mathcal{P}' is not a PRP.
- (f) Iterate the process a third time to define function family \mathcal{P}'' . Write out your definition in terms of \mathcal{F} . Show that \mathcal{P}'' is not a strong PRP (we mentioned in class that \mathcal{P}'' is a PRP).
- 3. (A PRP which is not a strong PRP.) Given an efficiently invertible PRP $\mathcal{P} = \{P_s : \{0,1\}^k \to \{0,1\}^k\}_{s \in \{0,1\}^k}$ construct an *explicit* permutation family \mathcal{P}' such that \mathcal{P}' is a PRP but not a strong PRP. (You should be able to *prove* that your candidate \mathcal{P}' is a PRP if \mathcal{P} is, and you should show by explicit attack that \mathcal{P}' is not a strong PRP. Make sure that \mathcal{P}' is still an efficiently invertible permutation!)

- 4. (Identification.) Consider the following public-key identification scheme: the public key is a modulus N which is the product of two primes p, q such that $p = q = 3 \mod 4$; the prover knows the factorization of N. Let $\mathcal{J}_N^{+1} \subset \mathbb{Z}_N^*$ denote those elements of \mathbb{Z}_N^* with Jacobi symbol¹ +1. An execution of the scheme proceeds as follows: the verifier chooses a random $y \in \mathcal{J}_N^{+1}$ (this can be done efficiently, since the Jacobi symbol of $y \in \mathbb{Z}_N^*$ can be efficiently computed even without the factorization of N) and sends y as the challenge. The prover checks whether y or -y is a quadratic residue (for N and y as above, exactly one of y or -y is a quadratic residue), computes an arbitrary square root x for the appropriate one, and replies with x. The verifier checks whether $x^2 = \pm y \mod N$.
 - (a) Prove that this scheme is secure against a *passive* eavesdropper. In particular, show that an adversary who passively eavesdrops on multiple executions of the protocol and then impersonates the real prover can be used to factor N.
 - (b) Prove that this scheme is *not* secure against an active adversary who may act as a verifier. In particular, show how an adversary acting as a dishonest verifier can recover the entire secret key.

¹Note: you do not need to know anything about the Jacobi symbol in order to do this problem.