Problem Set 3
Due at beginning of class on Mar. 18

1. Basing identification on private-key encryption. Let \((\mathcal{E}, \mathcal{D})\) be a private-key encryption scheme for \(k\)-bit messages, and consider the following identification protocols in the shared-key setting (the prover \(P\) and verifier \(V\) begin by sharing a random key \(s \in \{0,1\}^k\):

Protocol 1. \(V\) chooses \(r \in \{0,1\}^k\) at random and sends \(r\) to \(P\). The prover computes \(C \leftarrow \mathcal{E}_s(r)\) and sends \(C\). The verifier accepts iff \(\mathcal{D}_s(C) \overset?= r\).

Protocol 2. \(V\) chooses \(r \in \{0,1\}^k\) at random, computes \(C \leftarrow \mathcal{E}_s(r)\), and sends \(C\) to the prover. \(P\) computes \(r' = \mathcal{D}_s(C)\) and sends \(r'\). The verifier accepts iff \(r \overset?= r'\).

For each of the following statements, give either a proof of security or a counterexample showing that the statement is, in general, not true. (If you give a counterexample, you need not be completely formal if your counterexample is “obviously” true.)

- If \((\mathcal{E}, \mathcal{D})\) is secure against ciphertext-only attacks, then Protocol 1 is necessarily secure against weak attacks.
- If \((\mathcal{E}, \mathcal{D})\) is secure against chosen-plaintext attacks, then Protocol 1 is necessarily secure against passive attacks.
- If \((\mathcal{E}, \mathcal{D})\) is secure against chosen-plaintext attacks, then Protocol 2 is necessarily secure against passive attacks.
- If \((\mathcal{E}, \mathcal{D})\) is secure against chosen-plaintext attacks, then Protocol 2 is necessarily secure against active attacks.