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CMSC858K — Cryptography
Professor Jonathan Katz

Problem Set 4

Due at beginning of class on April 10 (due to the midterm)
Note: do not wait until April 3 to work on this!

1. Basing identification on RSA. In class we discussed public-key identification
schemes based on the discrete logarithm problem. Here, we develop a public-key
scheme based on the hardness of the RSA problem.

The scheme proceeds as follows: A prover P generates his public key by choosing a
modulus N = pq (where p, g are distinct, k-bit primes) and a prime exponent e for
which ged(e, ¢(N)) = 1. They also choose x < Z7}, and compute y = z° mod N. The
public key is (N, e, y) and the private key is .

In an execution of the protocol, the prover begins by choosing random r « Z% and
sending A = r® mod N to the verifier. The verifier chooses and sends a random
challenge b < Z.. Finally, the prover responds with C' = 2z’ mod N and the verifier

accepts iff C*¢ L y?A mod N.

e Show that the scheme is correct; that is, if the prover and verifier both act
honestly then the verifier always accepts.

e Prove the following lemma:
Given C,e,y, N and b > 0 such that (1) C¢ = yE mod N and (2)

ged(e, 5) = 1, it is possible to efficiently compute x such that x°
y mod N.

Hint: use the fact that if ged(e, l~)) = 1 then it is possible to efficiently compute

integers «, 0 such that a-e4+ G-b=1.

e Prove that any PPT adversary attacking this identification scheme via a weak
attack cannot succeed with probability noticeably better than 1/e, assuming the
RSA problem is hard. You may use the lemma from the previous part.

e Prove that any PPT adversary attacking this identification scheme via a passive
attack cannot succeed with probability noticeably better than 1/e, assuming
the RSA problem is hard. You may use results from any previous part of the
problem.

e In practice, for reasons of efficiency e = 3 is often chosen. Do you recommend
that choice of parameters here?

2. A variant of the Lamport scheme. We improve (slightly) on the Lamport one-
time signature scheme we gave in class. Recall that the Lamport scheme requires a
public key consisting of 2¢ elements in order to sign messages ¢ bits long. Since signing
(-bit messages can also be viewed as signing one message out of 2¢ possible messages,



we can view the efficiency of the Lamport scheme in the following equivalent way: if
there are n elements in the public key, we can sign one message out of 2/2 possible
messages.

We now show one way to improve this. Consider the following scheme which allows
signing one message out of 6 possible messages: the public key consists of four elements
(y1,%2,y3,y4). The secret key consists of their inverses (z1 = f~1(y1),...). We assume
the 6 possible messages are ordered in advance in some publicly known way (i.e.,
lexicographically). To sign message 1, send the pair (z1,x2); to sign message 2, send
the pair (21, x3); .. .; to sign message 6, send the pair (z3,x4). Each signature consists
of a pair of elements. Verification is done in the obvious way.

e Prove the security of the above scheme for signing one of a possible 6 messages.
How does the security reduction you obtain here compare to what was obtained
in class for the Lamport scheme?

e Sketch the generalization of the above scheme for when you have n elements in
the public key (no proof of security is necessary).

e What is the complexity of this generalization? In other words, given a public
key containing n elements, how large is the space of possible messages you can
sign? Try to generalize the scheme so as to obtain the best possible result.

. Representations of group elements, and applications. Let G be a cyclic group
of order ¢, where ¢ is a prime. Assume also that the discrete logarithm problem is
hard in G. Let g1,92,93 € G be generators. For any element h € G, we say that
(z,y,z) is a representation of h with respect to g1, g2, g3 iff h = g¥g595.

e For a given element h € G, how many distinct representations (z,y, z) of h are
there with respect to g1, g2, g3? How many of these satisfy x = Z, for some fixed
Z € Z4? How many satisfy x = Z,y = y for fixed 2,y € Z,?

e Show that, assuming the discrete logarithm problem is hard in G, no PPT al-
gorithm can take g1, g2, g3 as input and output h € G along with two distinct
representations of h (with respect to g1, g2, g3).

e Assume that we can represent elements in G by strings of length |¢| + 1. Define

the function Hy, g, 4, : Z3 — G by Hy, g, 9:(,y, 2) e g7 9595. Argue that this is
a collision-resistant hash function (when g1, g2, g3 are randomly chosen).



