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Problem Set 4
Due at beginning of class on April 10 (due to the midterm)

Note: do not wait until April 3 to work on this!

1. Basing identification on RSA. In class we discussed public-key identification
schemes based on the discrete logarithm problem. Here, we develop a public-key
scheme based on the hardness of the RSA problem.

The scheme proceeds as follows: A prover P generates his public key by choosing a
modulus N = pq (where p, q are distinct, k-bit primes) and a prime exponent e for
which gcd(e, ϕ(N)) = 1. They also choose x←

�
∗

N and compute y = xe mod N . The
public key is 〈N, e, y〉 and the private key is x.

In an execution of the protocol, the prover begins by choosing random r ←
�

∗

N and
sending A = re mod N to the verifier. The verifier chooses and sends a random
challenge b←

�
e. Finally, the prover responds with C = xbr mod N and the verifier

accepts iff Ce ?
= ybA mod N .

• Show that the scheme is correct ; that is, if the prover and verifier both act
honestly then the verifier always accepts.

• Prove the following lemma:

Given C̃, e, y,N and b̃ > 0 such that (1) C̃e = yb̃ mod N and (2)
gcd(e, b̃) = 1, it is possible to efficiently compute x such that xe =
y mod N .

Hint : use the fact that if gcd(e, b̃) = 1 then it is possible to efficiently compute
integers α, β such that α · e + β · b̃ = 1.

• Prove that any ppt adversary attacking this identification scheme via a weak
attack cannot succeed with probability noticeably better than 1/e, assuming the
RSA problem is hard. You may use the lemma from the previous part.

• Prove that any ppt adversary attacking this identification scheme via a passive
attack cannot succeed with probability noticeably better than 1/e, assuming
the RSA problem is hard. You may use results from any previous part of the
problem.

• In practice, for reasons of efficiency e = 3 is often chosen. Do you recommend
that choice of parameters here?

2. A variant of the Lamport scheme. We improve (slightly) on the Lamport one-
time signature scheme we gave in class. Recall that the Lamport scheme requires a
public key consisting of 2` elements in order to sign messages ` bits long. Since signing
`-bit messages can also be viewed as signing one message out of 2` possible messages,
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we can view the efficiency of the Lamport scheme in the following equivalent way: if
there are n elements in the public key, we can sign one message out of 2n/2 possible
messages.

We now show one way to improve this. Consider the following scheme which allows
signing one message out of 6 possible messages: the public key consists of four elements
(y1, y2, y3, y4). The secret key consists of their inverses (x1 = f−1(y1), . . .). We assume
the 6 possible messages are ordered in advance in some publicly known way (i.e.,
lexicographically). To sign message 1, send the pair (x1, x2); to sign message 2, send
the pair (x1, x3); . . . ; to sign message 6, send the pair (x3, x4). Each signature consists
of a pair of elements. Verification is done in the obvious way.

• Prove the security of the above scheme for signing one of a possible 6 messages.
How does the security reduction you obtain here compare to what was obtained
in class for the Lamport scheme?

• Sketch the generalization of the above scheme for when you have n elements in
the public key (no proof of security is necessary).

• What is the complexity of this generalization? In other words, given a public
key containing n elements, how large is the space of possible messages you can
sign? Try to generalize the scheme so as to obtain the best possible result.

3. Representations of group elements, and applications. Let � be a cyclic group
of order q, where q is a prime. Assume also that the discrete logarithm problem is
hard in � . Let g1, g2, g3 ∈ � be generators. For any element h ∈ � , we say that
(x, y, z) is a representation of h with respect to g1, g2, g3 iff h = gx

1 gy
2
gz
3 .

• For a given element h ∈ � , how many distinct representations (x, y, z) of h are
there with respect to g1, g2, g3? How many of these satisfy x = x̃, for some fixed
x̃ ∈

�
q? How many satisfy x = x̃, y = ỹ for fixed x̃, ỹ ∈

�
q?

• Show that, assuming the discrete logarithm problem is hard in � , no ppt al-
gorithm can take g1, g2, g3 as input and output h ∈ � along with two distinct
representations of h (with respect to g1, g2, g3).

• Assume that we can represent elements in � by strings of length |q|+ 1. Define

the function Hg1,g2,g3
:

�
3
q → � by Hg1,g2,g3

(x, y, z)
def
= gx

1gy
2
gz
3 . Argue that this is

a collision-resistant hash function (when g1, g2, g3 are randomly chosen).
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