Problem Set 4
Due at beginning of class on April 10 (due to the midterm)
Note: do not wait until April 3 to work on this!

1. **Basing identification on RSA.** In class we discussed public-key identification schemes based on the discrete logarithm problem. Here, we develop a public-key scheme based on the hardness of the RSA problem.

The scheme proceeds as follows: A prover \mathcal{P} generates his public key by choosing a modulus $N = pq$ (where p, q are distinct, k-bit primes) and a prime exponent e for which $\gcd(e, \varphi(N)) = 1$. They also choose $x \leftarrow \mathbb{Z}_N^*$ and compute $y = x^e \mod N$. The public key is (N, e, y) and the private key is x.

In an execution of the protocol, the prover begins by choosing random $r \leftarrow \mathbb{Z}_N^*$ and sending $A = r^e \mod N$ to the verifier. The verifier chooses and sends a random challenge $b \leftarrow \mathbb{Z}_e$. Finally, the prover responds with $C = x^b r \mod N$ and the verifier accepts if $C^e \equiv y^b A \mod N$.

- Show that the scheme is correct; that is, if the prover and verifier both act honestly then the verifier always accepts.
- Prove the following lemma:
 Given \hat{C}, e, y, N and $\hat{b} > 0$ such that (1) $\hat{C}^e \equiv y^{\hat{b}} \mod N$ and (2) $\gcd(e, \hat{b}) = 1$, it is possible to efficiently compute x such that $x^e \equiv y \mod N$.

 Hint: use the fact that if $\gcd(e, \hat{b}) = 1$ then it is possible to efficiently compute integers α, β such that $\alpha \cdot e + \beta \cdot \hat{b} = 1$.
- Prove that any PPT adversary attacking this identification scheme via a weak attack cannot succeed with probability noticeably better than $1/e$, assuming the RSA problem is hard. You may use the lemma from the previous part.
- Prove that any PPT adversary attacking this identification scheme via a passive attack cannot succeed with probability noticeably better than $1/e$, assuming the RSA problem is hard. You may use results from any previous part of the problem.
- In practice, for reasons of efficiency $e = 3$ is often chosen. Do you recommend that choice of parameters here?

2. **A variant of the Lamport scheme.** We improve (slightly) on the Lamport one-time signature scheme we gave in class. Recall that the Lamport scheme requires a public key consisting of 2ℓ elements in order to sign messages ℓ bits long. Since signing ℓ-bit messages can also be viewed as signing one message out of 2^ℓ possible messages,
we can view the efficiency of the Lamport scheme in the following equivalent way: if there are \(n \) elements in the public key, we can sign one message out of \(2^{n/2} \) possible messages.

We now show one way to improve this. Consider the following scheme which allows signing one message out of 6 possible messages: the public key consists of four elements \((y_1, y_2, y_3, y_4)\). The secret key consists of their inverses \((x_1 = f^{-1}(y_1), \ldots)\). We assume the 6 possible messages are ordered in advance in some publicly known way (i.e., lexicographically). To sign message 1, send the pair \((x_1, x_2)\); to sign message 2, send the pair \((x_1, x_3)\); \ldots; to sign message 6, send the pair \((x_3, x_4)\). Each signature consists of a pair of elements. Verification is done in the obvious way.

- Prove the security of the above scheme for signing one of a possible 6 messages. How does the security reduction you obtain here compare to what was obtained in class for the Lamport scheme?
- Sketch the generalization of the above scheme for when you have \(n \) elements in the public key (no proof of security is necessary).
- What is the complexity of this generalization? In other words, given a public key containing \(n \) elements, how large is the space of possible messages you can sign? Try to generalize the scheme so as to obtain the best possible result.

3. **Representations of group elements, and applications.** Let \(\mathbb{G} \) be a cyclic group of order \(q \), where \(q \) is a prime. Assume also that the discrete logarithm problem is hard in \(\mathbb{G} \). Let \(g_1, g_2, g_3 \in \mathbb{G} \) be generators. For any element \(h \in \mathbb{G} \), we say that \((x, y, z)\) is a representation of \(h \) with respect to \(g_1, g_2, g_3 \).

- For a given element \(h \in \mathbb{G} \), how many distinct representations \((x, y, z)\) of \(h \) are there with respect to \(g_1, g_2, g_3 \)? How many of these satisfy \(x = \tilde{x} \), for some fixed \(\tilde{x} \in \mathbb{Z}_q \)? How many satisfy \(x = \tilde{x}, y = \tilde{y} \) for fixed \(\tilde{x}, \tilde{y} \in \mathbb{Z}_q \)?
- Show that, assuming the discrete logarithm problem is hard in \(\mathbb{G} \), no PPT algorithm can take \(g_1, g_2, g_3 \) as input and output \(h \in \mathbb{G} \) along with two distinct representations of \(h \) (with respect to \(g_1, g_2, g_3 \)).
- Assume that we can represent elements in \(\mathbb{G} \) by strings of length \(|g| + 1\). Define the function \(H_{g_1,g_2,g_3} : \mathbb{Z}_q^3 \to \mathbb{G} \) by \(H_{g_1,g_2,g_3}(x, y, z) = g_1^x g_2^y g_3^z \). Argue that this is a collision-resistant hash function (when \(g_1, g_2, g_3 \) are randomly chosen).