Problem Set 2 — Solutions

Thanks to Dov Gordon for his help with these solutions

1. We use counter-mode encryption, but use the fixed nonce ’1’ rather than a random nonce. More formally, let F be a pseudorandom function that (for security parameter n) maps n-bit strings to n-bit strings. Then the encryption of a message $m = m_1 \| \cdots \| m_\ell$ (with $|m_i| = n)$ using key k is given by:

$$m_1 \oplus F_k(\langle 1 \rangle) \| m_2 \oplus F_k(\langle 2 \rangle) \| \cdots \| m_\ell \oplus F_k(\langle \ell \rangle),$$

where $\langle i \rangle$ denotes the n-bit representation of the integer i. Decryption is done in the obvious way.

This scheme handles arbitrary-length messages (that are a multiple of the block-length, n) and a proof that it has indistinguishable encryptions in the presence of an eavesdropper is essentially as in class. (The only potential problem is a “wrap-around” in the counter, but this only occurs if the message has block-length greater than 2^n. A polynomial-time adversary cannot output a message this long for n sufficiently large.) Be sure that you would be able to write such a proof, if asked, on an exam!

The scheme is trivially insecure against a multi-message attack since it is deterministic.

2. (With help from a large hint in Goldreich’s book [Chapter 5, exercise 33])

We start with the scheme (Enc, Dec) we saw in class: Let F be a pseudorandom function, and define $\text{Enc}_k(m)$ as follows: choose $r \leftarrow \{0,1\}^n$, and output $\langle r, F_k(r) \oplus m \rangle$. We modify this encryption scheme in the following way. Keys are now $2n$ bits long (parsed as two n-bit strings k, s) and encryption is defined as:

$$\text{Enc}_k^*(m) = \begin{cases} \langle 0, s, \text{Enc}_k(m) \rangle & \text{if } m \neq s \\ \langle 1, k, \text{Enc}_k(m) \rangle & \text{if } m = s \end{cases}$$

Decryption simply ignores the first two components of the ciphertext.

It is easy to see that this scheme is not secure against chosen-plaintext attacks. Using two adaptively-chosen queries to the encryption oracle, the adversary can recover k, at which point the scheme is completely broken.

Consider the adversary that attempts to distinguish whether a vector of ciphertexts corresponds to the encryption of the vector $(m_1^0, \ldots, m_\ell^0)$ or the vector $(m_1^1, \ldots, m_\ell^1)$. (Where these vectors are both output at once.) It is not too hard to see that, unless there exists an i, b with $m_i^b = s$, the modified encryption Enc' is as secure as the original encryption Enc. Because s is a randomly-chosen n-bit string, and all the messages are output by the adversary before it has any information about s, the probability that there exists an i, b with $m_i^b = s$ is negligible.

This can easily be turned into a proof that $(\text{Enc}', \text{Dec}')$ is secure in the sense of multi-message indistinguishability: Let \mathcal{A}' be a PPT adversary attacking $\Pi' = (\text{Enc}', \text{Dec}')$ in the sense of multi-message indistinguishability, and construct the following PPT adversary \mathcal{A} attacking Π
in the same sense: \mathcal{A} runs \mathcal{A}', obtains two vectors of messages, and outputs these vectors. When \mathcal{A} is given a vector of ciphertexts (c_1,\ldots,c_ℓ), it chooses a random $s \leftarrow \{0,1\}^n$ and gives to \mathcal{A}' the vector $((0,s,c_1),\ldots,(0,s,c_\ell))$. Then \mathcal{A} outputs whatever “guess” is output by \mathcal{A}'.

Because the view of \mathcal{A}', above, is only different from its view when attacking Π' if $s \in \{m_i^b\}$, we have

$$\Pr[\mathcal{A} \text{ guesses correctly when attacking } \Pi] \geq \Pr[\mathcal{A}' \text{ guesses correctly when attacking } \Pi'] - \Pr[s \in \{m_i^b\}] .$$

We have already noted that $\Pr[s \in \{m_i^b\}]$ is negligible. Since security of Π implies that

$$\Pr[\mathcal{A} \text{ guesses correctly when attacking } \Pi] \leq \frac{1}{2} + \text{negl}(n)$$

for some negligible function negl, we have

$$\Pr[\mathcal{A}' \text{ guesses correctly when attacking } \Pi'] \leq \frac{1}{2} + \text{negl}'(n),$$

for some negligible function negl'. This shows that Π' is secure in the desired sense.

3. Say nonces r and r' overlap if $|r - r'| < \ell(n)$. A proof of security boils down to showing that the probability that some pair of nonces overlap is negligible. (Make sure you understand why this is the case!)

Let overlap$_{i,j}$ denote the event that nonces r_i and r_j overlap, and let Overlap denote the event that some pair of nonces overlap. Note that $\Pr[\text{overlap}_{i,j}] = (2\ell(n) - 1)/2^n$, assuming each nonce is uniformly-random n-bit string.

Then

$$\Pr[\text{Overlap}] = \Pr\left[\bigvee_{i \neq j} \text{overlap}_{i,j}\right] \leq \sum_{i \neq j} \Pr[\text{overlap}_{i,j}] = \sum_{i \neq j} \frac{2\ell(n) - 1}{2^n} = \binom{q(n)}{2} \cdot \left(\frac{2\ell(n) - 1}{2^n}\right),$$

since $q(n)$ nonces are chosen. This is negligible in n, concluding the proof.

4. The adversary queries the oracle with some (arbitrary) message m of length n, where n is the input/output length of the PRF F_k. He receives in response a tag $MAC_k(m) = F_k(0^n \oplus m) = F_k(m)$. He then queries the message $m||0^n$ and receives the tag $MAC_k(m||0^n) = F_k(F_k(m))$. Finally, he outputs the (message, tag) pair $(F_k(m),F_k(F_k(m)))$. Note that the adversary had never queried the oracle with the message $F_k(m)$, and $MAC_k(F_k(m)) = F_k(F_k(m))$, so this is a forgery.

5. (a) The scheme in the problem is secure. To formally prove this, we need to modify the standard experiment defining security of a message authentication code. Consider the following experiment:

i. A random key k is chosen.
ii. The adversary A gets to specify some (polynomial) length i^*, and then gets to interact with an oracle that computes CBC-MAC using key k for messages of block-length i^*.

iii. The adversary succeeds if it outputs a message/tag pair (m, t) such that (1) m has block-length i^*; (2) m was never queried to the MAC oracle; and (3) t is a CBC-MAC tag on m with respect to key k.

Although we did not explicitly state this in class, it can be shown that if F is a pseudo-random function then any ppt adversary A succeeds with only negligible probability in the above experiment. (In class, we assumed the length was fixed, not chosen by A.)

Say we have an adversary A' attacking the variant of CBC-MAC as in the problem. Let $\epsilon(n)$ be the probability that A' succeeds in outputting a forgery. We construct an adversary A as follows: first, it guesses a random $i^* \leftarrow \{1, \ldots, \ell\}$ and outputs it. Then it chooses keys $k_i \leftarrow \{0, 1\}^n$ for all $i \neq i^*$, and runs A'. When A' requests a MAC for a message m, there are two cases:

- If m has length i^*, then A requests a MAC on m from its own MAC oracle and returns the result to A'.
- If m has length $i \neq i^*$, then A computes the MAC on its own using key k_i.

When A' outputs (m, t), if m has length i^* then (m, t) is output by A.

Note that (1) A carries out a valid attack on the original CBC-MAC (as discussed above), and (2) A provides a perfect simulation for A'. Since i^* is chosen at random and is independent of the view of A', the probability that its final output (m, t) has length i^* is $1/\ell(n)$ and the probability that A outputs a forgery is $\epsilon(n)/\ell(n)$. Because this must be negligible (by security of regular CBC-MAC), we conclude that ϵ is negligible as well.

(b) Let k be a key of length n, and let F be a pseudorandom function. Then to compute a MAC on a message m of length i, do:

i. Set $k_i := F_k(i)$.
ii. Compute a CBC-MAC on m using key k_i.

We leave the proof that this is secure as an exercise.