University of Maryland CMSC858K — Introduction to Cryptography Professor Jonathan Katz

Problem Set 2 — Solutions

Thanks to Dov Gordon for his help with these solutions

1. We use counter-mode encryption, but use the fixed nonce '1' rather than a random nonce. More formally, let F be a pseudorandom function that (for security parameter n) maps n-bit strings to n-bit strings. Then the encryption of a message $m = m_1 \| \cdots \| m_\ell$ (with $|m_i| = n$) using key k is given by:

$$m_1 \oplus F_k(\langle 1 \rangle) \parallel m_2 \oplus F_k(\langle 2 \rangle) \parallel \cdots \parallel m_\ell \oplus F_k(\langle \ell \rangle),$$

where $\langle i \rangle$ denotes the *n*-bit representation of the integer *i*. Decryption is done in the obvious way.

This scheme handles arbitrary-length messages (that are a multiple of the block-length, n) and a proof that it has indistinguishable encryptions in the presence of an eavesdropper is essentially as in class. (The only potential problem is a "wrap-around" in the counter, but this only occurs if the message has block-length greater than 2^n . A polynomial-time adversary cannot output a message this long for n sufficiently large.) Be sure that you would be able to write such a proof, if asked, on an exam!

The scheme is trivially insecure against a multi-message attack since it is deterministic.

2. (With help from a large hint in Goldreich's book [Chapter 5, exercise 33])

We start with the scheme (Enc, Dec) we saw in class: Let F be a pseudorandom function, and define $\text{Enc}_k(m)$ as follows: choose $r \leftarrow \{0,1\}^n$, and output $\langle r, F_k(r) \oplus m \rangle$. We modify this encryption scheme in the following way. Keys are now 2n bits long (parsed as two *n*-bit strings k, s) and encryption is defined as:

$$\mathsf{Enc}'_k(m) = \begin{cases} \langle 0, s, \mathsf{Enc}_k(m) \rangle & \text{if } m \neq s \\ \langle 1, k, \mathsf{Enc}_k(m) \rangle & \text{if } m = s \end{cases}$$

Decryption simply ignores the first two components of the ciphertext.

It is easy to see that this scheme is not secure against chosen-plaintext attacks. Using two adaptively-chosen queries to the encryption oracle, the adversary can recover k, at which point the scheme is completely broken.

Consider the adversary that attempts to distinguish whether a vector of ciphertexts corresponds to the encryption of the vector $(m_1^0, \ldots, m_\ell^0)$ or the vector $(m_1^1, \ldots, m_\ell^1)$. (Where these vectors are both output at once.) It is not too hard to see that, unless there exists an i, b with $m_i^b = s$, the modified encryption Enc' is as secure as the original encryption Enc. Because sis a randomly-chosen n-bit string, and all the messages are output by the adversary before it has any information about s, the probability that there exists an i, b with $m_i^b = s$ is negligible.

This can easily be turned into a proof that (Enc', Dec') is secure in the sense of multi-message indistinguishability: Let \mathcal{A}' be a PPT adversary attacking $\Pi' = (Enc', Dec')$ in the sense of multi-message indistinguishability, and construct the following PPT adversary \mathcal{A} attacking Π

in the same sense: \mathcal{A} runs \mathcal{A}' , obtains two vectors of messages, and outputs these vectors. When \mathcal{A} is given a vector of ciphertexts (c_1, \ldots, c_ℓ) , it chooses a random $s \leftarrow \{0, 1\}^n$ and gives to \mathcal{A}' the vector $(\langle 0, s, c_1 \rangle, \ldots, \langle 0, s, c_\ell \rangle)$. Then \mathcal{A} outputs whatever "guess" is output by \mathcal{A}' .

Because the view of \mathcal{A}' , above, is only different from its view when attacking Π' if $s \in \{m_i^b\}$, we have

- $\Pr[\mathcal{A} \text{ guesses correctly when attacking } \Pi]$
 - $\geq \Pr[\mathcal{A}' \text{ guesses correctly when attacking } \Pi'] \Pr\left[s \in \{m_i^b\}\right].$

We have already noted that $\Pr\left[s \in \{m_i^b\}\right]$ is negligible. Since security of Π implies that

 $\Pr[\mathcal{A} \text{ guesses correctly when attacking } \Pi] \leq \frac{1}{2} + \mathsf{negl}(n)$

for some negligible function negl, we have

$$\Pr[\mathcal{A}' \text{ guesses correctly when attacking } \Pi'] \leq \frac{1}{2} + \operatorname{\mathsf{negl}}'(n),$$

for some negligible function negl'. This shows that Π' is secure in the desired sense.

3. Say nonces r and r' overlap if $|r - r'| < \ell(n)$. A proof of security boils down to showing that the probability that some pair of nonces overlap is negligible. (Make sure you understand why this is the case!)

Let $\operatorname{overlap}_{i,j}$ denote the event that nonces r_i and r_j overlap, and let $\operatorname{Overlap}$ denote the event that some pair of nonces overlap. Note that $\Pr[\operatorname{overlap}_{i,j}] = (2\ell(n) - 1)/2^n$, assuming each nonce is uniformly-random *n*-bit string.

Then

$$\begin{split} \Pr[\mathsf{Overlap}] &= \Pr\left[\bigvee_{i \neq j} \mathsf{overlap}_{i,j}\right] &\leq \sum_{i \neq j} \Pr[\mathsf{overlap}_{i,j}] \\ &= \sum_{i \neq j} \frac{2\ell(n) - 1}{2^n} = \binom{q(n)}{2} \cdot \left(\frac{2\ell(n) - 1}{2^n}\right), \end{split}$$

since q(n) nonces are chosen. This is negligible in n, concluding the proof.

- 4. The adversary queries the oracle with some (arbitrary) message m of length n, where n is the input/output length of the PRF F_k . He receives in response a tag $MAC_k(m) = F_k(0^n \oplus m) = F_k(m)$. He then queries the message $m || 0^n$ and receives the tag $MAC_k(m || 0^n) = F_k(F_k(m))$. Finally, he outputs the (message, tag) pair $(F_k(m), F_k(F_k(m)))$. Note that the adversary had never queried the oracle with the message $F_k(m)$, and $MAC_k(F_k(m)) = F_k(F_k(m))$, so this is a forgery.
- 5. (a) The scheme in the problem is secure. To formally prove this, we need to modify the standard experiment defining security of a message authentication code. Consider the following experiment:
 - i. A random key k is chosen.

- ii. The adversary \mathcal{A} gets to specify some (polynomial) length i^* , and then gets to interact with an oracle that computes CBC-MAC using key k for messages of block-length i^* .
- iii. The adversary succeeds if it outputs a message/tag pair (m, t) such that (1) m has block-length i^* ; (2) m was never queried to the MAC oracle; and (3) t is a CBC-MAC tag on m with respect to key k.

Although we did not explicitly state this in class, it can be shown that if F is a pseudorandom function then any PPT adversary \mathcal{A} succeeds with only negligible probability in the above experiment. (In class, we assumed the length was fixed, not chosen by \mathcal{A} .)

Say we have an adversary \mathcal{A}' attacking the variant of CBC-MAC as in the problem. Let $\epsilon(n)$ be the probability that \mathcal{A}' succeeds in outputting a forgery. We construct an adversary \mathcal{A} as follows: first, it guesses a random $i^* \leftarrow \{1, \ldots, \ell\}$ and outputs it. Then it chooses keys $k_i \leftarrow \{0, 1\}^n$ for all $i \neq i^*$, and runs \mathcal{A}' . When \mathcal{A}' requests a MAC for a message m, there are two cases:

- If m has length i^* , then \mathcal{A} requests a MAC on m from its own MAC oracle and returns the result to \mathcal{A}' .
- If m has length $i \neq i^*$, then \mathcal{A} computes the MAC on its own using key k_i .

When \mathcal{A}' outputs (m, t), if m has length i^* then (m, t) is output by \mathcal{A} .

Note that (1) \mathcal{A} carries out a valid attack on the original CBC-MAC (as discussed above), and (2) \mathcal{A} provides a perfect simulation for \mathcal{A}' . Since i^* is chosen at random and is independent of the view of \mathcal{A}' , the probability that its final output (m, t) has length i^* is $1/\ell(n)$ and the probability that \mathcal{A} outputs a forgery is $\epsilon(n)/\ell(n)$. Because this must be negligible (by security of regular CBC-MAC), we conclude that ϵ is negligible as well.

- (b) Let k be a key of length n, and let F be a pseudorandom function. Then to compute a MAC on a message m of length i, do:
 - i. Set $k_i := F_k(i)$.
 - ii. Compute a CBC-MAC on m using key k_i .

We leave the proof that this is secure as an exercise.