Problem Set 3
Due at the beginning of class on March 8
Please type your solutions, preferably using latex.

1. Let f, g be length-preserving one-way functions (so, e.g., $|f(x)| = |x|$). For each of the following functions f', decide whether it is necessarily a one-way function (for arbitrary f, g) or not. If it is, prove it. If not, show a counterexample.

 (a) $f'(x) \overset{\text{def}}{=} f(x) \oplus g(x)$.
 (b) $f'(x) \overset{\text{def}}{=} f(f(x))$.
 (c) $f'(x_1\|x_2) \overset{\text{def}}{=} f(x_1)\|g(x_2)$.

("\|" means concatenation.)

2. Let f be a length-preserving one-way function. Let $\text{bit}(i, x) \overset{\text{def}}{=} x_i$, the ith bit of x (defined for $1 \leq i \leq |x|$).

 (a) Prove that the function f' defined by

 $$f'(x) = f(x)\|\text{bit}(1, x)\|1$$

 is one-way, but that the predicate $\text{bit}(1, \cdot) : \{0,1\}^* \to \{0,1\}$ is not hard-core for f'.

 (b) Construct a function g that is one-way, but such that no bit of the input is hard-core.

3. Let G be a pseudorandom generator that expands its input by a single bit. Define

 $$G'(x_1\|x_2) \overset{\text{def}}{=} G(x_1)\|G(x_2).$$

 Prove that G' is a pseudorandom generator.

4. Let G be a length-doubling pseudorandom generator. Prove that G is a one-way function.