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Problem Set 3 — Solutions

1. (a) This f ′ is not (in general) a one-way function. To see this, take f = g (i.e., set them to
be the same function). Then f ′ maps all points to the all-0 string, and is certainly not
one-way.

(b) This f ′ is not (in general) a one-way function. For example, let g be a one-way function
and define f as follows:

f(x1‖x2) = g(x2)‖0
n,

where |x1| = |x2| = n. It is not hard to see that f is one-way (a proof is left as
an exercise). On the other hand, f ′ as defined in the problem maps all inputs to the
constant value g(0n)‖0n, and so is not one-way.

Interestingly, if f is a one-way permutation then f ′ must be one-way. A proof of this is
also left as an exercise.

(c) This f ′
is one-way. In fact, this holds even if only f is one-way (regardless of g, as long

as g is efficiently-computable). To see this, fix a ppt adversary A′ and let

ε(n)
def
= Pr[A′(f ′(x)) outputs an inverse of f ′(x)],

where the probability is taken over uniform choice of x and the random coins of A ′.
Consider the following ppt adversary A: given input y1 (which is equal to f(x1) for
randomly-chosen x1), choose random x2, compute y2 := g(x2), and run A′(y1‖y2). Then
output the first half of the string output by A′. It is not hard to see that (1) the input
y1‖y2 given to A′ is distributed identically to f ′(x1‖x2) for randomly-chosen x1, x2. This
implies that A′ inverts its input with probability ε(n). Furthermore, (2) whenever A′

successfully inverts its input, A successfully inverts its own input. We conclude that A
outputs an inverse of y1 with probability at least ε(n), showing that ε must be negligible.

2. (a) It is immediate that bit(1, ·) is not hard-core for the given function f ′, so we just prove
that f ′ is one-way. Fix some ppt adversary A′ and let

ε(n)
def
= Pr[A′(f ′(x)) outputs an inverse of f ′(x)].

Construct the following adversary A:

Given input y (which is equal to f(x) for random x), choose a random bit b and
run A′(y‖b‖1) to get x. Output x.

To analyze the behavior of A, note that b = bit(1, x) with probability at least 1/2. (It
can occur with higher probability if f is not one-to-one.) Furthermore, if A ′ outputs an
inverse of y‖b‖1 then A correctly inverts its given input y. We conclude that A outputs
an inverse of y with probability at least ε(n)/2, and so ε must be negligible.

(b) One possibility is to define f ′(x, i) = f(x) ‖ bit(i, x) ‖ i. Any bit of the input can be
guessed with probability at least 1/2 + O(1/n) (where |x| = n), but it is possible to
prove (as in part (a)) that f ′ is still one-way.
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3. We want to prove that for all ppt A, the following is negligible:

ε(n)
def
=

∣

∣

∣

Pr[A(G(x1) ‖G(x2)) = 1] − Pr[A(r1 ‖ r2) = 1]
∣

∣

∣

,

where x1, x2 are chosen uniformly from {0, 1}n and r1, r2 are chosen uniformly from {0, 1}n+1.
We prove it in two steps.

Claim 1 ε1(n)
def
=

∣

∣

∣
Pr[A(G(x1) ‖G(x2)) = 1] − Pr[A(G(x1) ‖ r2) = 1]

∣

∣

∣
is negligible.

Construct a ppt adversary A′ as follows: on input y2, choose random x1 ∈ {0, 1}n and output
whatever A(G(x1) ‖ y2) outputs. We have

ε′(n)
def
=

∣

∣

∣

Pr[A′(G(x)) = 1] − Pr[A′(r) = 1]
∣

∣

∣

=
∣

∣

∣
Pr[A(G(x1) ‖G(x)) = 1] − Pr[A(G(x1) ‖ r) = 1]

∣

∣

∣

= ε1(n).

The claim follows by security of G.

Claim 2 ε2(n)
def
=

∣

∣

∣

Pr[A(G(x1) ‖ r2) = 1] − Pr[A(r1 ‖ r2) = 1]
∣

∣

∣

is negligible.

Construct a ppt adversary A′ as follows: on input y1, choose random r2 ∈ {0, 1}n+1 and
output whatever A(y1 ‖ r2) outputs. We have

ε′(n)
def
=

∣

∣

∣

Pr[A′(G(x)) = 1] − Pr[A′(r) = 1]
∣

∣

∣

=
∣

∣

∣

Pr[A(G(x) ‖ r2) = 1] − Pr[A(r ‖ r2) = 1]
∣

∣

∣

= ε2(n).

The claim follows by security of G.

Finally, we have

ε(n) =
∣

∣

∣

Pr[A(G(x1) ‖G(x2)) = 1] − Pr[A(G(x1) ‖ r2) = 1]

+ Pr[A(G(x1) ‖ r2) = 1] − Pr[A(r1 ‖ r2) = 1]
∣

∣

∣

≤
∣

∣

∣
Pr[A(G(x1) ‖G(x2)) = 1] − Pr[A(G(x1) ‖ r2) = 1]

∣

∣

∣

+
∣

∣

∣
Pr[A(G(x1) ‖ r2) = 1] − Pr[A(r1 ‖ r2) = 1]

∣

∣

∣

= ε1(n) + ε2(n).

Since ε1, ε2 are negligible, this completes the proof.

4. Fix a ppt algorithm A, and let

ε(n)
def
= Pr[A(G(x)) inverts G(x)].
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Consider the following ppt distinguisher A′: given input y ∈ {0, 1}2n, run A(y) to obtain
output x. If G(x) = y output 1; otherwise, output 0.

Almost by definition, we have Pr[A′(G(x)) = 1] = ε(n). On the other hand

Pr[A′(r) = 1] ≤ Pr[∃x such that G(x) = r].

Since G(x) takes on at most 2n values, the latter probability is at most 2n/22n = 2−n. Taken
together, we have

∣

∣Pr[A′(G(x)) = 1] − Pr[A′(r) = 1]
∣

∣ ≥ ε(n) − 2−n ;

since G is a pseudorandom generator, we conclude that ε must be negligible.

Interestingly, it is possible to prove that a PRG G is a one-way function even if it only expands
by a single bit, though the proof is a bit more challenging.
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