Problem Set 3 — Solutions

- 1. (a) This f' is not (in general) a one-way function. To see this, take f = g (i.e., set them to be the same function). Then f' maps all points to the all-0 string, and is certainly not one-way.
 - (b) This f' is not (in general) a one-way function. For example, let g be a one-way function and define f as follows:

$$f(x_1 \| x_2) = g(x_2) \| 0^n$$

where $|x_1| = |x_2| = n$. It is not hard to see that f is one-way (a proof is left as an exercise). On the other hand, f' as defined in the problem maps all inputs to the constant value $g(0^n) || 0^n$, and so is not one-way.

Interestingly, if f is a one-way *permutation* then f' must be one-way. A proof of this is also left as an exercise.

(c) This f' is one-way. In fact, this holds even if only f is one-way (regardless of g, as long as g is efficiently-computable). To see this, fix a PPT adversary \mathcal{A}' and let

 $\epsilon(n) \stackrel{\text{def}}{=} \Pr[\mathcal{A}'(f'(x)) \text{ outputs an inverse of } f'(x)],$

where the probability is taken over uniform choice of x and the random coins of \mathcal{A}' . Consider the following PPT adversary \mathcal{A} : given input y_1 (which is equal to $f(x_1)$ for randomly-chosen x_1), choose random x_2 , compute $y_2 := g(x_2)$, and run $\mathcal{A}'(y_1||y_2)$. Then output the first half of the string output by \mathcal{A}' . It is not hard to see that (1) the input $y_1||y_2$ given to \mathcal{A}' is distributed identically to $f'(x_1||x_2)$ for randomly-chosen x_1, x_2 . This implies that \mathcal{A}' inverts its input with probability $\epsilon(n)$. Furthermore, (2) whenever \mathcal{A}' successfully inverts its input, \mathcal{A} successfully inverts its own input. We conclude that \mathcal{A} outputs an inverse of y_1 with probability at least $\epsilon(n)$, showing that ϵ must be negligible.

2. (a) It is immediate that $bit(1, \cdot)$ is not hard-core for the given function f', so we just prove that f' is one-way. Fix some PPT adversary \mathcal{A}' and let

 $\epsilon(n) \stackrel{\text{def}}{=} \Pr[\mathcal{A}'(f'(x)) \text{ outputs an inverse of } f'(x)].$

Construct the following adversary \mathcal{A} :

Given input y (which is equal to f(x) for random x), choose a random bit b and run $\mathcal{A}'(y||b||1)$ to get x. Output x.

To analyze the behavior of \mathcal{A} , note that $b = \operatorname{bit}(1, x)$ with probability at least 1/2. (It can occur with higher probability if f is not one-to-one.) Furthermore, if \mathcal{A}' outputs an inverse of y ||b|| 1 then \mathcal{A} correctly inverts its given input y. We conclude that \mathcal{A} outputs an inverse of y with probability at least $\epsilon(n)/2$, and so ϵ must be negligible.

(b) One possibility is to define $f'(x,i) = f(x) \| \operatorname{bit}(i,x) \| i$. Any bit of the input can be guessed with probability at least 1/2 + O(1/n) (where |x| = n), but it is possible to prove (as in part (a)) that f' is still one-way.

3. We want to prove that for all $ppt \mathcal{A}$, the following is negligible:

$$\epsilon(n) \stackrel{\text{def}}{=} \left| \Pr[\mathcal{A}(G(x_1) \parallel G(x_2)) = 1] - \Pr[\mathcal{A}(r_1 \parallel r_2) = 1] \right|,$$

where x_1, x_2 are chosen uniformly from $\{0, 1\}^n$ and r_1, r_2 are chosen uniformly from $\{0, 1\}^{n+1}$. We prove it in two steps.

Claim 1
$$\epsilon_1(n) \stackrel{\text{def}}{=} \left| \Pr[\mathcal{A}(G(x_1) \parallel G(x_2)) = 1] - \Pr[\mathcal{A}(G(x_1) \parallel r_2) = 1] \right|$$
 is negligible.

Construct a PPT adversary \mathcal{A}' as follows: on input y_2 , choose random $x_1 \in \{0,1\}^n$ and output whatever $\mathcal{A}(G(x_1) || y_2)$ outputs. We have

$$\epsilon'(n) \stackrel{\text{def}}{=} \left| \Pr[\mathcal{A}'(G(x)) = 1] - \Pr[\mathcal{A}'(r) = 1] \right|$$
$$= \left| \Pr[\mathcal{A}(G(x_1) \| G(x)) = 1] - \Pr[\mathcal{A}(G(x_1) \| r) = 1] \right|$$
$$= \epsilon_1(n).$$

The claim follows by security of G.

Claim 2
$$\epsilon_2(n) \stackrel{\text{def}}{=} \left| \Pr[\mathcal{A}(G(x_1) || r_2) = 1] - \Pr[\mathcal{A}(r_1 || r_2) = 1] \right|$$
 is negligible.

Construct a PPT adversary \mathcal{A}' as follows: on input y_1 , choose random $r_2 \in \{0,1\}^{n+1}$ and output whatever $\mathcal{A}(y_1 || r_2)$ outputs. We have

$$\epsilon'(n) \stackrel{\text{def}}{=} \left| \Pr[\mathcal{A}'(G(x)) = 1] - \Pr[\mathcal{A}'(r) = 1] \right|$$
$$= \left| \Pr[\mathcal{A}(G(x) \parallel r_2) = 1] - \Pr[\mathcal{A}(r \parallel r_2) = 1] \right|$$
$$= \epsilon_2(n).$$

The claim follows by security of G.

Finally, we have

$$\begin{aligned} \epsilon(n) &= \left| \Pr[\mathcal{A}(G(x_1) \| G(x_2)) = 1] - \Pr[\mathcal{A}(G(x_1) \| r_2) = 1] \right| \\ &+ \Pr[\mathcal{A}(G(x_1) \| r_2) = 1] - \Pr[\mathcal{A}(r_1 \| r_2) = 1] \right| \\ &\leq \left| \Pr[\mathcal{A}(G(x_1) \| G(x_2)) = 1] - \Pr[\mathcal{A}(G(x_1) \| r_2) = 1] \right| \\ &+ \left| \Pr[\mathcal{A}(G(x_1) \| r_2) = 1] - \Pr[\mathcal{A}(r_1 \| r_2) = 1] \right| \\ &= \epsilon_1(n) + \epsilon_2(n). \end{aligned}$$

Since ϵ_1, ϵ_2 are negligible, this completes the proof.

4. Fix a PPT algorithm \mathcal{A} , and let

$$\epsilon(n) \stackrel{\text{def}}{=} \Pr[\mathcal{A}(G(x)) \text{ inverts } G(x)].$$

Consider the following PPT distinguisher \mathcal{A}' : given input $y \in \{0,1\}^{2n}$, run $\mathcal{A}(y)$ to obtain output x. If G(x) = y output 1; otherwise, output 0.

Almost by definition, we have $\Pr[\mathcal{A}'(G(x)) = 1] = \epsilon(n)$. On the other hand

$$\Pr[\mathcal{A}'(r) = 1] \le \Pr[\exists x \text{ such that } G(x) = r].$$

Since G(x) takes on at most 2^n values, the latter probability is at most $2^n/2^{2n} = 2^{-n}$. Taken together, we have

$$\left|\Pr[\mathcal{A}'(G(x))=1] - \Pr[\mathcal{A}'(r)=1]\right| \ge \epsilon(n) - 2^{-n};$$

since G is a pseudorandom generator, we conclude that ϵ must be negligible.

Interestingly, it is possible to prove that a PRG G is a one-way function even if it only expands by a single bit, though the proof is a bit more challenging.