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1.
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Problem Set 3 — Solutions

This f’ is not (in general) a one-way function. To see this, take f = g (i.e., set them to
be the same function). Then f/ maps all points to the all-0 string, and is certainly not
one-way.

This f’ is not (in general) a one-way function. For example, let g be a one-way function
and define f as follows:

flarlz2) = g(a2)[|0",

where |z1| = |z2| = n. It is not hard to see that f is one-way (a proof is left as
an exercise). On the other hand, f’ as defined in the problem maps all inputs to the
constant value ¢(0™)]|0", and so is not one-way.

Interestingly, if f is a one-way permutation then f’ must be one-way. A proof of this is
also left as an exercise.

This f is one-way. In fact, this holds even if only f is one-way (regardless of g, as long
as g is efficiently-computable). To see this, fix a PPT adversary A’ and let

e(n) aof Pr[A’(f'(x)) outputs an inverse of f'(z)],

where the probability is taken over uniform choice of z and the random coins of A’.
Consider the following PPT adversary A: given input y; (which is equal to f(x1) for
randomly-chosen z1), choose random x2, compute yo := g(z2), and run A’(y;||y2). Then
output the first half of the string output by A’. It is not hard to see that (1) the input
y1|ly2 given to A’ is distributed identically to f’(z1||z2) for randomly-chosen x1, zo. This
implies that A" inverts its input with probability €(n). Furthermore, (2) whenever A’
successfully inverts its input, A successfully inverts its own input. We conclude that A
outputs an inverse of y; with probability at least ¢(n), showing that e must be negligible.

It is immediate that bit(1,-) is not hard-core for the given function f’, so we just prove
that f’ is one-way. Fix some PPT adversary A’ and let

e(n) def Pr[A’(f'(x)) outputs an inverse of f'(x)].

Construct the following adversary .A:

Given input y (which is equal to f(x) for random x), choose a random bit b and

run A'(y||b]|1) to get z. Output .
To analyze the behavior of A, note that b = bit(1,x) with probability at least 1/2. (It
can occur with higher probability if f is not one-to-one.) Furthermore, if A’ outputs an
inverse of y||b||1 then A correctly inverts its given input y. We conclude that .4 outputs
an inverse of y with probability at least €(n)/2, and so e must be negligible.
One possibility is to define f'(x,i) = f(z)| bit(¢,z)| 7. Any bit of the input can be
guessed with probability at least 1/2 + O(1/n) (where |z| = n), but it is possible to
prove (as in part (a)) that f’ is still one-way.



3. We want to prove that for all ppt A, the following is negligible:

e(n) def

PrlA(G(x1) || G(x2)) = 1] — Pr[A(r1 [ r2) = 1]

)

where z1, 29 are chosen uniformly from {0,1}" and 1, 7y are chosen uniformly from {0, 1}"+1.
We prove it in two steps.

Claim 1 ¢;(n) o

PrlA(G(x1) || G(z2)) = 1] — Pr[A(G(z1) || m2) = 1]‘ is negligible.

Construct a PPT adversary A’ as follows: on input ys, choose random z7 € {0,1}" and output
whatever A(G(z1) || y2) outputs. We have

d(n) ‘Pr[A’(G(x)) —1] - Pr[A/(r) = 1]\

= ‘PT[A(G(%) |G (2)) = 1] = PrlA(G (1) [| ) = 1]
= el(n).

The claim follows by security of G.

Claim 2 €3(n) e

PrlA(G(z1) || 72) = 1] — PrlA(r || 72) = 1]‘ is negligible.

Construct a PPT adversary A’ as follows: on input y;, choose random 7 € {0,1}"*! and
output whatever A(y; || r2) outputs. We have

d(n) (Pr[A'(G(x)) = 1] _Pr[A'(r):u(
= | PHA(G() | r2) = 1] = Pr{A(r || r2) = 1]
= €(n).

The claim follows by security of G.

Finally, we have
en) = | PrLAG(1) | Glaz)) = 1] = PILAG(1) || 72) = 1]
+ PrA(G(@1) [[72) = 1] = Pr{A(r || r2) = 1]

IN

| PrA(G (1) || Glz2)) = 1] = PrA(G(z1) || r2) = 1]
| PrEAG @) 172) = 1] = PrlA(r | r2) = 1]

= €1(n) + ex(n).
Since €1, €5 are negligible, this completes the proof.

4. Fix a PPT algorithm A, and let

e(n) = Pr[A(G(x)) inverts G(z)].



Consider the following PPT distinguisher A’: given input y € {0,1}?", run A(y) to obtain
output z. If G(x) = y output 1; otherwise, output 0.

Almost by definition, we have Pr[A’(G(z)) = 1] = €(n). On the other hand
Pr[A’(r) = 1] < Pr[3z such that G(z) = r].

Since G(x) takes on at most 2" values, the latter probability is at most 27 /22" = 27", Taken
together, we have

|Pr[A'(G(z)) = 1] = Pr[A'(r) = 1]| > e(n) —27";

since (G is a pseudorandom generator, we conclude that ¢ must be negligible.

Interestingly, it is possible to prove that a PRG G is a one-way function even if it only expands
by a single bit, though the proof is a bit more challenging.



