University of Maryland CMSC858K — Introduction to Cryptography Professor Jonathan Katz

Problem Set 4

Due at the beginning of class on April 12 Please type your solutions, preferably using latex.

- 1. This question concerns the group \mathbb{Z}_p^* , where p = 2q + 1 with p, q prime. Let $g \in \mathbb{Z}_p^*$ be a generator.
 - (a) Let $h \in \mathbb{Z}_p^*$. Show that h is a quadratic residue modulo p if and only if $h^q = 1 \mod p$. (Hint: it is relatively easy to show that h is a quadratic residue implies $h^q = 1 \mod p$. For the other direction, use the fact that \mathbb{Z}_p^* is cyclic.)
 - (b) The discrete logarithm problem is assumed to be hard in \mathbb{Z}_p^* , meaning that the function $\exp : \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ defined by $\exp(x) = g^x \mod p$ is assumed to be one-way. Let $\mathsf{lsb}(x)$ denote the least-significant bit of x. Prove that lsb is not a hard-core predicate for exp.
 - (c) Prove that the decisional Diffie-Hellman assumption does not hold in \mathbb{Z}_p^* .
 - (d) (Extra credit:) The decisional Diffie-Hellman assumption is believed to hold in the subgroup $\mathbb{G} < \mathbb{Z}_p^*$ of quadratic residues modulo p. Show that this implies that the *computational* Diffie-Hellman assumption holds in \mathbb{Z}_p^* . (Note: this question requires a small bit of group theory not covered in class. Specifically, use the fact that $\mathbb{Z}_p^* \cong \mathbb{Z}_q \times \mathbb{Z}_2$.)
- 2. Consider the following *interactive protocol* Π' for encrypting a message: first, the sender and receiver run a key-exchange protocol Π to generate a shared key k. Next, the sender computes $c \leftarrow \mathsf{Enc}_k(m)$ and sends c to the other party, who can decrypt and recover m using k.
 - (a) Formulate a definition of indistinguishable encryptions in the presence of an eavesdropper appropriate for this interactive setting.
 - (b) Prove that if Π is secure in the presence of an eavesdropper, and (Gen, Enc, Dec) is a private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper (and Gen(1ⁿ) outputs a key chosen uniformly at random from {0,1}ⁿ), then Π' satisfies your definition given in part (a).
- 3. In class we discussed hybrid encryption. The natural way of applying this to the El Gamal encryption scheme is as follows. The public key is $pk = \langle \mathbb{G}, q, g, y \rangle$, and to encrypt a message m the sender chooses random $k \leftarrow \{0, 1\}^n$ and sends

$$\langle \mathsf{ElGamal}_{pk}(k), \mathsf{Enc}_k(m) \rangle = \langle g^r, h^r \cdot k, \mathsf{Enc}_k(m) \rangle,$$

where $r \leftarrow \mathbb{Z}_q$ is chosen at random and we assume k can be encoded as an element of G. Suggest an improvement that results in a shorter ciphertext containing only a *single* group element (in addition to a private-key encryption of m).