
University of Maryland
CMSC858K — Introduction to Cryptography
Professor Jonathan Katz

Problem Set 4

1. (Here, let p be an arbitrary prime.) If h is a quadratic residue modulo p, then h =
g2 mod p for some g ∈

�
∗

p. Then

h(p−1)/2 =
(

g2
)(p−1)/2

= gp−1 = 1 mod p.

For the other direction, let g be a generator of
�
∗

p and say h(p−1)/2 = 1 mod p. We know

that h = gx mod p for some x ∈
�

p−1, and so gx(p−1)/2 = 1 mod p. This implies that
x(p − 1)/2 = 0 mod (p − 1). This cannot be satisfied for any odd value of x, and so we
conclude that x must be even. But then

h = gx =
(

gx/2
)2

,

and h is a quadratic residue.

The previous problem shows that given h and p it is possible to determine in polynomial
time whether h is a quadratic residue or not. But if h = gx mod p then h is a quadratic
residue iff x is even, which is true iff the least significant bit of x is 1.

(a)(b) Given (g, y1, y2, y3), where g is a generator, do the following: let b1, b2, b3 equal 1 if y1,
y2, and y3, respectively, are quadratic residues (and 0 otherwise). Then if b1 · b2 = b3

output 1, and output 0 otherwise.

If (g, y1, y2, y3) is a Diffie-Hellman tuple (i.e., y1 = gx and y2 = gy for some x, y, and
y3 = gxy), then b1 · b2 = b3 always holds. (To see this, note that xy mod (p − 1) is even
iff at least one of x or y is even.) So given a Diffie-Hellman tuple the above algorithm
always outputs 1.

On the other hand, if (g, y1, y2, y3) is a random tuple (i.e., y1 = gx and y2 = gy and
y + 2 = gz for random x, y, z), then the probability that b3 = b1 · b2 is exactly 1/2.

Taken together, this means we have a polynomial-time algorithm that distinguishes with
non-negligible probability 1 − 1

2 = 1
2 .

(c) If the decisional Diffie-Hellman assumption holds in � then the computational Diffie-
Hellman (CDH) assumption holds in this group also. We show now that if the compu-
tational Diffie-Hellman assumption does not hold in

�
∗

p then it does not hold in � .

Let A be a polynomial-time algorithm solving the CDH problem in
�

∗

p with probability
δ(n), where this probability is taken over randomly-chosen generator g and y1, y2 ∈�
∗

p, (i.e., A(g, y1, y2) outputs CDHg(y1, y2) with probability δ(k) over random choice of
g, y1, y2). Note that to use A effectively in a reduction we must provide it with inputs
chosen according to the same distribution.

When p = 2q + 1 and q is odd, then −1 ∈
�
∗

p is not a quadratic residue (and so no in
� ). So if g is a generator of � then we can decompose

�
∗

p as

�
∗

p
∼= � ×

�
2
∼= 〈g〉 × 〈−1〉.

1



The key observation is that a random element of � times a random element of 〈−1〉
gives a random element of

�
∗

p; furthermore, a random generator of � times −1 gives a
random generator of

�
∗

p.

Using this observation, construct the following algorithm A′ that takes g, y1, y2 ∈ � as
input: pick random b1, b2 ∈ {0, 1} and set

ĝ = g · (−1) mod p

ŷ1 = y1 · (−1)b1 mod p

ŷ2 = y2 · (−1)b2 mod p.

Then run A(ĝ, ŷ1, ŷ2) to obtain output ĥ. Output h = ĥ · (−1)b1b2 mod p. We claim that
A′ succeeds with probability exactly δ(n). This follows from the facts that: (1) When
the inputs to A′ are a random generator g ∈ � and random y1, y2 ∈ � , then the inputs to
A are a random generator ĝ ∈

�
∗

p and random ŷ1, ŷ2 ∈
�
∗

p; and (2) whenever A succeeds,
so does A′. Filling in the details is left to the reader.

2. (a) The definition I was looking for was the following: the adversary A outputs two equal-
length messages m0,m1; then a random bit b is chosen; the parties run the protocol to
send the message mb; the adversary is given the entire transcript and outputs b′. The
adversary succeeds if b′ = b and security requires that for all ppt A the probability of
success is at most 1

2 + negl(n).

(b) Fix an adversary A attacking the interactive encryption scheme in the above sense. Say
the success probability of A is δ(n). Construct the following adversary A′ attacking the
key exchange protocol: A′ is given as input a transcript trans of an execution of the
key-exchange protocol, along with a key k that is either the key corresponding to the
given transcript or a random key. It runs A to obtain m0,m1, chooses a random bit b
on its own, gives trans and Enck(mb) to A, and obtains A’s output b′. If b = b′, then A′

outputs 1; it outputs 0 otherwise.

When k is the actual key then the simulation provided for A is perfect, and so A ′

outputs 1 in this case with probability exactly δ(n). On the other hand, by security of
the key exchange protocol we know that the probability that A′ outputs 1 when given
a random key is at least δ(n) − negl(n). I.e., even when k is random (and uncorrelated
with trans), A guesses the bit b correctly with at least this probability.

Now consider the following adversary A′′ attacking the encryption scheme. A′′ runs A to
obtain messages m0,m1. It outputs these messages, and is given in return a ciphertext
c. Then it runs, on its own, an execution of the key-exchange protocol to obtain a
transcript trans (it ignores whatever key is computed); it then gives trans and c to A.
Finally, A′′ outputs whatever is output by A.

In the above, the key used to generate ciphertext c is chosen at random independent
of trans. But as observed earlier, we know that A succeeds with probability at least
δ(n) − negl(n). But security of the encryption scheme implies that this is at most
1
2 + negl(n). Putting everything together shows that δ(n) is at most 1

2 + negl(n).

3. I give the construction, but the proof that it is secure is left to the reader. The observation
is that yr already “looks random” so we may use it directly as an encryption key instead of
first using it to “blind” another random value k. This means encryption is done as:

〈gr, Encyr(m)〉.

2



(Technically speaking, we need to worry about the fact that yr is a group element and not
a random string. This can be dealt with as discussed in class with regard to Diffie-Hellman
key exchange.)

Another way to think of the above is that it is just a non-interactive scheme that results from
“collapsing” the interactive encryption protocol of the previous problem (assuming Diffie-
Hellman is used for key exchange).

3


