
University of Maryland
CMSC858K — Introduction to Cryptography
Professor Jonathan Katz

Problem Set 5

1. I show here how to obtain a scheme with complexity n1/3; the extension to nε applies the
same idea recursively.

It will help to first recall the basic scheme. Let the database have size d, and use n as the
length of the modulus. The server views the database as an d1/2-by-d1/2 table; the user sends
d1/2 elements of

�
∗

N, of which exactly one is a quadratic residue. The server then sends
back d1/2 elements of

�
∗

N but the user only looks at one of them to determine the bit of the
database that he is interested in. The total communication complexity is 2nd1/2.

Since the user only looks at one of the elements returned by the server, a natural idea is to
use PIR recursively to retrieve the element he is interested in. By itself, this will not improve
the communication complexity since the user is already sending n · d1/2 bits to the server.

What we do instead is the following. View the database as a d1/3-by-d2/3 array. The user
now sends d1/3 elements of

�
∗

N, where again only one of these (corresponding to the row of
the bit he is interested in) is a quadratic residue. The server prepares d2/3 elements of

�
∗

N

for the response but does not send them. As before, the user is only interested in one of these
elements. So the user and the server can now apply the basic scheme to these d2/3 elements.
The communication complexity of this step is n ·2n(d2/3)1/2 = 2n2 ·d1/3 (the extra factor of n
arises because the user wants n bits), for a total communication complexity of (2n2+2n)·d1/3.

Note that although the above process was described as taking two stages, it can in fact all be
done using one message from the user to the server and one message in response.

2. (a) By construction, the user’s index I always appears in exactly one of the queries sent to
the databases. So the probability here is 1.

(b) Fixing i, the query (Si, Ti, Ui) received by server i is just three uniformly random sets.
So the probability that I is in the query is 1/8.

Alternately, one could argue that since exactly one of the eight servers receives a query
containing I, by symmetry the probability that server i receives such a query is 1/8.

(c) Following the first reasoning above, the probability is still 1/8.

(d) Since the answer to both (b) and (c) was the same, the probability the database correctly
guesses the user’s index is exactly 1/2 (or no better than random guessing).

3. Let (Gen,Sign,Vrfy) be a one-time signature scheme for 1-bit messages. Assume without
much loss of generality that on input 1n, algorithm Gen uses n random bits. (You can either
prove that this is without loss of generality, or simply adapt the following argument to the
general case.) Define f as follows: on input r ∈ {0, 1}n, compute Gen(1n; r). Note that this
is a deterministic computation even though Gen is a randomized algorithm, since we use r as
the random coins of Gen. It is not very difficult to show that f as defined must be one-way
(assuming, as usual in this class, perfect correctness of the signature scheme).

1



4. There are a number of ways to approach this problem. I show here how to request a signature
on a single message and then forge a signature on another message. Note that 0‖m‖0`/10 =
m · 2`/10 mod N . Request a signature on m = 0 · · · 011 (which is ’3’ in binary) and obtain
signature σ. The claim is that σ2 mod N is a forgery on the message m′ = 0 · · · 0 1001 0`/10

(which is 9 · 2`/10 in binary). Indeed,

(σ2)e = (σe)2 mod N

= (0‖m‖0`/10)2 mod N

= (3 · 2`/10)2 mod N

= 9 · 2`/10 · 2`/10 mod N

= 0‖0 · · · 0 1001 0`/10‖0`/10 mod N.

5. I give the solution in each case, but leave the proof to the reader.

(a) Let f be a one-way function, and define f ′ as follows: f ′(x1 · · · xn) = f(x1 · · · xn−10). It
is not hard to show that f ′ is still one-way, but plugging f ′ into Lamport’s scheme gives
a scheme that is not strongly secure.

(b) Let H be a collision-resistant hash function mapping strings of length 2n to strings of
length n. It is not hard to show that H is one-way. Using H in Lamport’s scheme gives
a strongly-secure one-time signature scheme.

(Note: formally we need to speak in terms of keyed hash functions but it is not hard to
modify Lamport’s scheme to take this into account.)

2


