
CMSC 858K — Advanced Topics in Cryptography January 27, 2004

Lecture 1

Lecturer: Jonathan Katz Scribe(s): Jonathan Katz

1 Introduction to These Notes

These notes are intended to supplement, not replace, the lectures given in class. In particu-
lar, only the technical aspects of the lecture are reproduced here; much of the surrounding
discussion that took place in class is not.

2 Trapdoor Permutations

We give two definitions of trapdoor permutations. The first is completely formal, and
maps well onto the (conjectured) trapdoor permutations that are used in practice. The
second is slightly less formal, but is simpler to use and somewhat easier to understand.
Generally speaking, however, proofs of security using the second of the two definitions can
be easily modified to work for the first definition as well. (Stronger definitions of trapdoor
permutations are sometimes also considered; see [1, 2] for some examples.)

We begin with a syntactic definition, and then give a concrete example. Before giving
the definition we introduce two pieces of notation. First is the abbreviation ppt which
stands for “probabilistic, polynomial-time”. This, of course, refers to algorithms which may
make random choices during their execution but which always terminate in a polynomial
number of steps. This begs the following question: polynomial in what? To deal with this,
we introduce the notion of a security parameter k which will be provided as input to all
algorithms. For technical reasons, the security parameter is given in unary and is thus
represented as 1k. In some sense, as we will see, a larger value of the security parameter
results in a “more secure” scheme. (Hopefully, the concrete example that follows will give
some more motivation for the purpose of the security parameters.)

Definition 1 A trapdoor permutation family is a tuple of ppt algorithms (Gen, Sample,
Eval, Invert) such that:

1. Gen(1k) is a probabilistic algorithm which outputs a pair (i, td). (One can think of i as
indexing a particular permutation fi defined over some domain Di, while td represents
some “trapdoor” information that allows inversion of fi.)

2. Sample(1k, i) is a probabilistic algorithm which outputs an element x ∈ Di (assuming
i was output by Gen). Furthermore, x is uniformly distributed in Di. (More formally,
the distribution {Sample(1k, i)} is equal to the uniform distribution over Di.)

3. Eval(1k, i, x) is a deterministic algorithm which outputs an element y ∈ Di (assuming
i was output by Gen and x ∈ Di). Furthermore, for all i output by Gen, the func-
tion Eval(1k, i, ·) : Di → Di is a permutation. (Thus, one can view Eval(1k, i, ·) as
corresponding to a permutation fi mentioned above.)

1-1

4. Invert(1k, td, y) is a deterministic algorithm which outputs an element x ∈ Di, where
(i, td) is a possible output of Gen.

Furthermore, we require that for all k, all (i, td) output by Gen, and all x ∈ Di we have
Invert(1k, td,Eval(1k, i, x)) = x. (This is our correctness requirement.) ♦

The correctness requirement enables one to associate Invert(1k, td, ·) with f−1

i . However,
it is crucial to recognize that while, as a mathematical function, f−1

i always exists, this
function is not necessarily efficiently computable. The definition above, however, guarantees
that it is efficiently computable, given the “trapdoor” information td (we will see below
that, informally, if the trapdoor permutation family is secure then f−1

i is not efficiently
computable without td).

Before going further, we give as a concrete example one of the most popular trapdoor
permutations used in practice: RSA [3] (some basic familiarity with RSA is assumed; we
merely show how RSA fits into the above framework).

1. Gen(1k) chooses two random, k-bit primes p and q, and forms their product N = pq.
It then computes ϕ(N) = (p − 1)(q − 1), chooses e relatively prime to ϕ(N), and
computes d such that ed = 1 mod ϕ(N). Finally, it outputs ((N, e), (N, d)) (note that
i in the definition above corresponds to (N, e) while td corresponds to (N, d)). The
domain DN,e is just

�
∗

N. (We can also see how the security parameter k comes into
play: it determines the length of the primes making up the modulus N , and thus
directly affects the “hardness” of factoring the resulting modulus.)

2. Sample(1k, (N, e)) simply chooses a uniformly-random element from
�

∗

N. We noted in
class that it is possible to do this efficiently.

3. Eval(1k, (N, e), x), where x ∈
�
∗

N, outputs y = xe mod N .

4. Invert(1k, (N, d), y), where y ∈
�
∗

N, outputs x = yd mod N .

It is well-known that Invert indeed computes the inverse of Eval. Hence, RSA (as described
above) is a trapdoor permutation family.

2.1 Trapdoor (One-Way) Permutations

The definition above was simply syntactic; it does not include any notion of “hardness”
or “security”. However, when cryptographers talk about trapdoor permutations they al-
ways mean one-way trapdoor permutations. Informally, this just means that a randomly-
generated trapdoor permutation is hard to invert when the trapdoor information td is not
known. In giving a formal definition, however, we must be careful: what do we mean
by “hard to invert”? Roughly speaking, we will say this means that any “efficient” algo-
rithm succeeds in inverting a randomly-generated fi (at a random point) with only “very
small” probability. (Note that it only makes sense to talk about the hardness of inverting a
randomly-generated trapdoor permutation. If we fix a trapdoor permutation fi then it may
very well be the case that an adversary knows the associated trapdoor. A similar argument
shows that the point to be inverted must be chosen at random as well.) It should be no
surprise that we associate “efficient” algorithms with ppt ones. Our notion of “small” is
made precise via the class of negligible functions, which we define now.

1-2

Definition 2 A function ε : � → � + ∪ {0} is negligible if it is asymptotically smaller than
any inverse polynomial. More formally, this means that for all c > 0 there exists an integer
Nc such that:

N > Nc ⇒ f(N) < 1/N c.

♦

We will now formally define the notion of being hard to invert, and thus formally define the
notion of one-way trapdoor permutation families.

Definition 3 A trapdoor permutation family (Gen,Sample,Eval, Invert) is one-way if for
any ppt A the following is negligible (in k):

Pr[(i, td)← Gen(1k); y ← Sample(1k, i);x← A(1k, i, y) : Eval(1k, i, x) = y]. (1)

♦

A few words are in order to explain Eq. (1), especially since this notation will be used
extensively throughout the rest of the semester. The equation represents the probability of
a particular event following execution of a particular experiment; the experiment itself is
written to the left of the colon, while the event of interest is written to the right of the colon.
Furthermore, individual components of the experiment are separated by a semicolon. We
use the notation “←” to denote a randomized procedure: if S is a set, then “x← S” denotes
selecting x uniformly at random from S; if A is a randomized algorithm, then “x← A(· · ·)”
represents running A (with uniformly-chosen randomness) to obtain output x. Finally, in
an experiment (i.e., to the left of the colon) “=” denotes assignment (thus, e.g., if A is a
deterministic algorithm then we write x = A(· · ·)); on the other hand, in an event (i.e., to
the right of the colon), “=” denotes a test of equality.

Thus, we may express Eq. (1) in words as follows:

The probability that Eval(1k, i, x) is equal to y upon completion of the following
experiment: run Gen(1k) to generate (i, td), run Sample(1k, i) to generate y, and
finally run A(1k, i, y) to obtain x.

Note also that Eq. (1) is indeed a function of k, and hence it makes sense to talk about
whether this expression is negligible or not.

From now on, when we talk about “trapdoor permutations” we always mean “a one-way
trapdoor permutation family”.

2.2 A Simplified Definition of Trapdoor Permutations

The above definition is somewhat cumbersome to work with, and we therefore introduce
the following simplified definition. As noted earlier, this definition does not map well (and
sometimes does not map at all) to the trapdoor permutations used in practice; yet, proofs
of security using this definition are (in general) easily modified to hold with regard to the
more accurate definition given above. (Of course, when giving proofs of security based on
trapdoor permutations, one should always be careful to make sure that this is the case.)

The following definition introduces two simplifying assumptions and one notational sim-
plification: our first assumption is that all Di are the same for a given security parameter

1-3

k. Furthermore, for a given security parameter k we will simply assume that Di = {0, 1}k

(i.e., the set of strings of length k). We simplify the notation as follows: instead of referring
to an index i and a trapdoor td, we simply refer to a permutation f and its inverse f −1.
(Technically, one should think of f as a description of f , which in particular allows for
efficient computation of f ; analogously, one should think of f−1 as a description of (an effi-
cient method for computing) f−1. In particular, it should always be kept in mind that the
mathematical function f−1 will not, in general, be computable in polynomial time without
being given some “trapdoor” information (which we are here representing by “f −1”).)

Definition 4 A trapdoor permutation family is a tuple of ppt algorithms (Gen,Eval, Invert)
such that:

1. Gen(1k) outputs a pair (f, f−1), where f is a permutation over {0, 1}k .

2. Eval(1k, f, x) is a deterministic algorithm which outputs some y ∈ {0, 1}k (assuming
f was output by Gen and x ∈ {0, 1}k). We will often simply write f(x) instead of
Eval(1k, f, x).

3. Invert(1k, f−1, y) is a deterministic algorithm which outputs some x ∈ {0, 1}k (as-
suming f−1 was output by Gen and y ∈ {0, 1}k). We will often simply write f−1(y)
instead of Invert(1k, f−1, y).

4. (Correctness.) For all k, all (f, f−1) output by Gen, and all x ∈ {0, 1}k we have
f−1(f(x)) = x.

5. (One-wayness.) For all ppt A, the following is negligible:

Pr[(f, f−1)← Gen(1k); y ← {0, 1}k ;x← A(1k, f, y) : f(x) = y].

♦

Given the above notation, we can just as well associate our trapdoor permutation family
with Gen (and let the algorithms Eval and Invert be entirely implicit).

References

[1] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[2] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications, Cambridge
University Press, to appear.

[3] R. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21(2): 120–126 (1978).

1-4

CMSC 858K — Advanced Topics in Cryptography January 29, 2004

Lecture 2

Lecturer: Jonathan Katz Scribe(s):
Alvaro A. Cardenas
Avinash J. Dalal
Julie Staub

1 Summary

In the last set of notes the concept of a trapdoor permutation was discussed. In this set of
lecture notes we begin by defining a public-key encryption scheme, and what it means for
that scheme to be semantically secure. We show that if a public-key encryption scheme is
secure under this definition then the encryption algorithm cannot be deterministic. We then
define a hardcore bit and use it to build a provably-secure public-key encryption scheme.

2 Public-Key Cryptography

Definition 1 A public-key encryption scheme is a triple of PPT algorithms (Gen, E ,D),
where

1. Gen is the key generation algorithm. Gen(1k) outputs a pair (pk, sk). We assume for
simplicity that |pk| = k.

2. E is the encryption algorithm. Given a plaintext m from a message spaceM, algorithm
Epk(m) returns a ciphertext C of polynomial length p(k).

3. D is the decryption algorithm. Dsk(C) returns a message m or the symbol ⊥ repre-
senting incorrect decryption. Incorrect decryption can happen for example if C is not
a valid ciphertext. (We will assume for simplicity — unless stated otherwise — that
the decryption algorithm is deterministic.)

4. The public-key encryption scheme must satisfy correctness: i.e., for all m ∈M and
all possible (pk, sk) output by Gen, we have Dsk(Epk(m)) = m.

♦

In the following we assume that authentication of the public keys is possible and thus our
main security concern is an attacker with access to the public key who attempts to obtain
information about the plaintext from the ciphertext. Since the adversary has access to the
public key pk, she can encrypt any message she wants and thus this scenario is sometimes
known as a chosen plaintext attack (CPA).

Our following definition of a secure public-key encryption scheme is strong in the sense
that we do not only require that an adversary cannot obtain the plaintext m from the

2-1

knowledge of the public-key pk and the ciphertext C, but also that an adversary cannot ob-
tain any partial information about m (except probably some information about the length).
This security notion is known as semantic security or indistinguishability [3, 1].

The security of the scheme is stated as a game in which an adversary has the ability
to select two messages. One of the messages is randomly selected and encrypted. The
encryption is then called secure if the adversary cannot do better than a random guess in
finding out which message was encrypted. Before we formalize the game we recall what a
negligible function is.

Definition 2 A function ε(·) : � → [0, 1] is negligible iff ∀ c > 0, there exists an Nc > 0
such that ∀ N > Nc we have ε(N) < 1/N c. ♦

An easier way of saying this is that ε(·) is negligible iff it grows smaller than any inverse
polynomial. A very common example of a negligible function is the inverse exponential,
ε(k) = 2−k. Note that 2−k = O(1/kc) for any c. We will use this definition of a negligible
function to explicitly define what it means for an encryption scheme to be secure.

Definition 3 A public-key encryption scheme (Gen, E ,D) is semantically secure if for all
ppt algorithms A, the following is negligible:

∣

∣

∣

∣

Pr

[

(pk, sk)← Gen(1k); (m0,m1)← A(pk);
b← {0, 1};C ← Epk(mb); b

′ ← A(pk,C)
: b = b′

]

−
1

2

∣

∣

∣

∣

.

♦

Theorem 1 If a public-key encryption scheme is semantically secure, then the encryption
algorithm is not deterministic.

Proof Consider an adversary who outputs (m0,m1) with m0 6= m1. When presented
with a ciphertext C, which is either an encryption of m0 or m1, compute C0 = Epk(m0). If
C = C0 output 0 else output 1. This adversary succeeds in guessing b (cf. the above game)
with probability 1; we use the fact that decryption succeeds with probability 1 and hence
the space of encryptions of m0 must be disjoint from the space of encryptions of m1.

In the first lecture we defined what one-way trapdoor permutations are. Intuitively a
one-way trapdoor permutation seems to be a good suggestion for a public-key encryption
scheme as it easy to evaluate the function (encrypt) and hard to invert without the trapdoor
(decrypt). More formally, given a one-way trapdoor permutation Gentd, it is tempting to
use the following encryption scheme: to generate keys, run Gentd(1

k) to obtain (f, f−1). Set
pk = f and sk = f−1. Set the encryption algorithm Ef (·) = f(·), and set the decryption
algorithm Df−1(·) = f−1(·). However, from Theorem 1 we can conclude that a one-way
trapdoor permutation cannot be used as a semantically secure public-key encryption scheme
because the evaluation algorithm (i.e., computing f(·)) is deterministic. Note in particular
that “textbook RSA” (where encryption is E

(N,e)
(m) = me mod N) is susceptible to the

adversary in the proof of Theorem 1. (It should also be clear, however, that the problems
of the above approach — and in particular the case of “textbook RSA” — go beyond the
fact that encryption is deterministic. For example, randomly padding the message before
encrypting is not sufficient to guarantee semantic security either.)

However not all hope for using one-way trapdoor permutations as a basis for a secure
encryption scheme is lost. First we will need to define hard-core bits.

2-2

3 Hard-Core Bits

Another problem with using one-way trapdoor permutations to encrypt (as suggested above)
is that they can potentially reveal some information about the input when we have access
to the output. For example, if f(x) is a one-way trapdoor permutation, then it is easy to
show that the function f ′(x1|x2) = x1|f(x2) (for |x1| = |x2|) is also a one-way trapdoor
permutation. Here, however, we see that f ′ reveals half of the bits of its input directly.
A hardcore bit of a one-way permutation is a bit of information that cannot be correctly
identified better than with random guessing. Hardcore bits help us to formalize the notion
of a single bit of information about the input x that is effectively obscured by the action of
a one-way trapdoor permutation. More formally we have:

Definition 4 Let H = {hk : {0, 1}k → {0, 1}}k≥1 be a collection of efficiently-computable
functions and let F = (Gentd) be a trapdoor permutation. H is a hard-core bit for F if
for all ppt algorithms A, the following is negligible (in k):

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x← {0, 1}k ; y = f(x) : A(f, y) = hk(x)]−

1

2

∣

∣

∣

∣

.

♦

Theorem 2 ([2]) Existence of hard-core bits. Let F = (Gentd) be a trapdoor permuta-
tion with f : {0, 1}k → {0, 1}k (for security parameter k). Consider the permutation family

F ′ = (Gen
′
td) with f ′ : {0, 1}2k → {0, 1}2k defined as f ′(x|r)

def
= f(x)|r, and the function

family H = {hk : {0, 1}2k → {0, 1}} defined by hk(x|r)
def
= x · r (where “·” represents the

binary dot product). Then F ′ is a trapdoor permutation with hard-core bit H.

Recall that if x = x1x2 . . . xk ∈ {0, 1}
k and r = r1r2, . . . rk ∈ {0, 1}

k then x · r
def
=

x1r1⊕x2r2⊕· · ·⊕xkrk =
⊕k

i=1
xiri (where ⊕ represents binary exclusive-or). For example,

1101011 · 1001011 = 1⊕ 0⊕ 0⊕ 1⊕ 0⊕ 1⊕ 1 = 0.

4 Public-Key Encryption From Trapdoor Permutations

In the following we assume for simplicity that M = {0, 1}, i.e. we only are interested in
encrypting single-bit messages (we will later show how any single-bit encryption scheme can
be used to derive an encryption scheme for poly-many bits). Given a trapdoor permutation
F = (Gentd), construct the following encryption scheme

1. Gen(1k):
(f, f−1)← Gentd(1

k)
Select a random r: r ← {0, 1}k

Output pk = (f, r) and sk = f−1

2. Epk(m) (where m ∈ {0, 1}):
pick x← {0, 1}k

Compute y = f(x)
Compute h′ = x · r
Output C = 〈y|h′ ⊕m〉

2-3

3. Dsk(y|b) (where |y| = k and |b| = 1):
Output (f−1(y) · r)⊕ b

Correctness Note that if y|b is a valid encryption of m then f−1(y) = x and b = (x·r)⊕m.
So the decryption algorithm will output (x · r)⊕ (x · r)⊕m = m.

Theorem 3 Assuming F is a trapdoor permutation, the encryption scheme presented above
is semantically secure.

Proof Assume toward a contradiction that the encryption scheme is not semantically
secure. Then there exists a ppt algorithm A such that

∣

∣

∣

∣

Pr[(pk, sk)← Gen(1k); b← {0, 1};C ← Epk(b); b
′ ← A(pk,C) : b = b′]−

1

2

∣

∣

∣

∣

(1)

is not negligible. For simplicity, we simply assume m0 = 0 and m1 = 1 (recall we are
working over a single-bit message space anyway, and the adversary cannot possibly succeed
with better than half probability if m0 = m1).

Let the one-way trapdoor permutation that we are using for the encryption scheme be
F = (Gentd). With this trapdoor permutation we construct F ′ = (Gen

′
td) with hard-core

bit H = {hk} as in Theorem 2; i.e., the hardcore bit for f ′(x|r) = f(x)|r is hk(x|r) = x · r .
We know that for any ppt adversary A′, the probability of guessing the hardcore bit x · r
given fk(x)|r is negligible; that is, the following is negligible for any ppt A′:

∣

∣

∣

∣

Pr

[

(f ′, f ′−1)← Gen
′
td(1

k);x← {0, 1}k ;
r ← {0, 1}k ; y = f(x)

: A′(f ′, y|r) = x · r

]

−
1

2

∣

∣

∣

∣

. (2)

Given A as above, our goal is to construct a ppt algorithm A′ contradicting the above
equation. We proceed as follows:

A′(f ′, y|r)
α← {0, 1}
Define pk = (f, r) and C = (y|α)
run A(pk,C)
if the output of A equals 0 then output α
else output the complement ᾱ

We may also rephrase the execution of A′ as follows: it runs A(pk,C) as above, and then
outputs α⊕A(pk,C) (this gives exactly the same output as above). Note also that A ′ runs
in probabilistic polynomial time, assuming A does.

Let us first examine the intuition behind this construction of A′. We have A(pk,C) =
A((f, r), (y|α)); thus, if A always correctly guessed which message was encrypted, then A
would always output (f−1(y) · r) ⊕ α, and hence A′ would always output f−1(y) · r. The
key thing to notice here is that f−1(y) · r is the hardcore bit hk(x|r) of f ′(x|r) (where we

let x
def
= f−1(y)). So, if A always succeeds (in “breaking” the encryption scheme) then A ′

always succeeds in guessing the hardcore bit. Of course, there is no reason to assume that
A always succeeds and a formal proof is needed.

2-4

To complete our proof we need to massage Eq. (2) into Eq. (1). We are interested in the
probability that A′ correctly predicts the hard-core bit (this is just Equation (2), replacing
f ′ by its definition in terms of f), i.e., we are interested in the following:

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ; y = f(x) : A′(f, y|r) = x · r]−

1

2

∣

∣

∣

∣

.

Re-writing the above in terms of how A′ was constructed, we obtain:

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ; y = f(x) : A′(f, y|r) = x · r]−

1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x);α← {0, 1}
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

.

Next, we modify the experiment syntactically by choosing a bit b at random and setting
α = (x ·r)⊕b (I will omit the parentheses from now on). Note, however, that from the point
of view of A this is exactly equivalent to the above (because α is still uniformly distributed
over {0, 1}). Thus, we obtain (after some algebraic simplification):

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ;

y = f(x);α← {0, 1}
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x); b← {0, 1};α = x · r ⊕ b
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x); b← {0, 1}
: A((f, r), (y|x · r ⊕ b)) = b

]

−
1

2

∣

∣

∣

∣

. (3)

Finally, let us look at the inputs given to A in the last expression above. The first input
(f, r) is exactly a public-key for the encryption scheme under consideration. Furthermore,
the second input y|x · r ⊕ b given to A (with x, y and r chosen at random) is exactly a
(random) encryption of the bit b with respect to the given public key. Thus, Equation (3)
is exactly equal to Equation (1) (and hence Equation (2) is equal to Equation (1)). But
we began by assuming that Equation (1) was non-negligible; this means that we have a
particular ppt adversary A′ for which Equation (2) is non-negligible. But this contradicts
the assumed security of the trapdoor permutation (i.e., Theorem 2).

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In Adv. in Cryptology — CRYPTO 1998.

[2] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, Proc. 21st
Ann. ACM Symp. on Theory of Computing, 1989, pp. 25–32.

[3] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System
Sciences, 28 (1984), pp. 270–299.

2-5

CMSC 858K — Advanced Topics in Cryptography February 3, 2004

Lecture 3

Lecturer: Jonathan Katz Scribe(s):
Abheek Anand
Gelareh Taban
Radostina Koleva

1 Introduction

In the last lecture, we introduced the notion of semantic security and gave a formal definition
for semantic security with respect to public-key encryption schemes. It was shown that given
the existence of hard-core bits, it is possible to construct a semantically secure public-key
encryption scheme for messages of length one bit. In this lecture, we introduce the hybrid
technique and use it to prove that semantic security of the constructed encryption scheme
can be extended to polynomially-many messages (of arbitrary polynomial length).

We begin by reviewing the construction of a semantically-secure public-key encryption
scheme from a trapdoor permutation. Let F = (Gen,Eval, Invert) be a trapdoor permutation
family and H = {hk} be a hard-core bit for F . Then we can construct the following public-
key encryption scheme PKE = (KeyGen, E ,D) for the encryption of 1-bit messages:

KeyGen(1k): (f, f−1)← Gen(1k)
PK = (f, hk)
SK = f−1

EPK(m): r ← {0, 1}k

output 〈f(r), hk(r)⊕m〉

DSK(〈y, b〉): output b⊕ hk(f
−1(y))

We showed in class last time that the encryption scheme above is semantically secure. In
particular, this implies the following theorem:

Theorem 1 Assuming trapdoor permutations exist, there exists a public-key encryption
scheme achieving semantic security (or security in the sense of indistinguishability).

2 Security for Multiple Messages

The encryption scheme above is semantically secure for messages of length one bit. Would
the scheme remain secure if it is applied (in the natural bit-by-bit fashion1) to messages
of length longer than one bit? Equivalently, is the scheme still secure if it is used to
encrypt multiple messages, each of length one bit? If the adversary is able to eavesdrop

1Here, encryption of m = m1 · · ·m` (with mi ∈ {0, 1}) is given by EPK(m1) · · · EPK(m`). The only
subtlety here is that independent random coins must be used for every invocation of the encryption algorithm.

3-1

on these messages, will she obtain extra information (perhaps correlated information about
the various messages) and be able to break the semantic security of the encryption scheme?

To model this stronger attack scenario where the adversary can intercept multiple mes-
sages via eavesdropping, we introduce the concept of an encryption oracle EPK,b(·, ·) which
the adversary can query as many times as it wants. This oracle takes as input two messages

m0,m1 of equal length, and we define EPK,b(m0,m1)
def
= EPK(mb) (where new random coins

are used to encrypt mb each time the oracle is invoked). A scheme is secure if the adversary
cannot guess the value of the bit b used by the encryption oracle (with much better than
probability 1/2). A formal definition follows.

Definition 1 A public-key encryption scheme PKE = (KeyGen, E ,D) is secure in the sense
of left-or-right indistinguishability if the following is negligible (in k) for any ppt adversary:

∣
∣
∣Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·)(PK) = b
]

− 1/2
∣
∣
∣ .

♦

Theorem 2 If a public-key encryption scheme PKE = (KeyGen, E ,D) is semantically se-
cure, then it is also secure in the sense of left-or-right indistinguishability.

Proof To prove this theorem, the hybrid argument is introduced. This technique plays
a central role in demonstrating the indistinguishability of complex ensembles based on the
indistinguishability of simpler ensembles. However, before we define the technique and
prove the more general case, we will show that a semantically secure encryption scheme (for
one message) is secure in the sense of left-or-right indistinguishability when two messages
are encrypted. This is represented by allowing the adversary to have oracle access to the
encryption oracle twice.

We will, as usual, perform a proof by contradiction: assume toward a contradiction
that PKE is semantically secure but not left-or-right secure. This means that we have
a ppt adversary A that can break the PKE in the left-or-right indistinguishability sense
with non-negligible probability. Using this adversary we will construct a ppt algorithm
that breaks the semantic security of the PKE with non-negligible probability. This is a
contradiction as according to the theorem PKE is semantically secure.

In what follows we will let the key generation step be implicit in order to make the
notation more readable. Construct adversary Â1 that can access the encryption oracle just
once, and tries to break semantic security as follows:

Â
EPK,b(·,·)
1 (PK)

Run A(PK)
At some point A asks for EPK,b(m0,m1)

Â1 queries its own encryption oracle and returns c← EPK,b(m0,m1) to A
Later, A requests a second encryption EPK,b(m

′
0,m

′
1)

Â1 returns c′ ← EPK(m′
0) to A (i.e., it encrypts m′

0 itself)

Â1 outputs the final output of A

3-2

Since A runs in polynomial time so does Â1. The probability that Â1 succeeds is:

Succ
Â1

def
= Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : Â
EPK,b(·,·)
1 (PK) = b

]

(1)

= Pr
[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·),EPK,0(·,·)(PK) = b
]

= Pr
[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

×
1

2

+Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

×
1

2
,

where we have abused notation and written AEPK,b1
(·,·),EPK,b2

(·,·) to indicate that the first
time A accesses its oracle, the oracle uses bit b1, whereas the second time A accesses its
oracle, the oracle uses bit b2.

Similarly, we construct an adversary Â
EPK,b(·,·)
2 that accesses the encryption oracle just

once and runs as follows:

Â
EPK,b(·,·)
2 (PK)

Run A(PK)
At some point A asks for EPK,b(m0,m1)

Â2 returns c← EPK(m1) to A (i.e., it encrypts m1 itself)
Later, A requests a second encryption EPK,b(m

′
0,m

′
1)

Â2 queries its own encryption oracle and returns c′ ← EPK,b(m
′
0,m

′
1) to A

Â2 outputs the final output of A

Again, Â2 is clearly a ppt algorithm. The probability that Â2 succeeds is:

Succ
Â2

def
= Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : Â
EPK,b(·,·)
2 (PK) = b

]

(2)

= Pr
[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,1(·,·),EPK,b(·,·)(PK) = b
]

= Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

×
1

2

+Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

×
1

2
.

We now express A’s advantage2 in breaking the left-or-right indistinguishability of the
scheme in terms of Equations (1) and (2):

AdvA
def
=

∣
∣
∣
∣
Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·)(PK) = b
]

−
1

2

∣
∣
∣
∣

=

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣

2An adversary’s advantage in this setting is simply the absolute value of its success probability (i.e., the
probability that it correctly guesses b) minus 1/2.

3-3

=

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

− 1

∣
∣
∣
∣
,

(3)

where we use the fact (from basic probability theory) that

Pr
[

AEPK,1(·,·)EPK,0(·,·)(PK) = 0
]

+ Pr
[

AEPK,1(·,·)EPK,0(·,·)(PK) = 1
]

= 1.

Continuing, we obtain:

AdvA ≤

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣

+

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣
.

= Adv
Â2

+ Adv
Â1

.

Since (by our initial assumption) AdvA was non negligible, the above implies that at least
one of Adv

Â1
or Adv

Â2
must be non negligible. However, this would imply that at least

one of Â1 or Â2 violate the semantic security of the encryption scheme, contradicting the
assumption of the theorem.

2.1 The Hybrid Argument

We can generalize the proof technique used above so that it applies to any indistinguishable
distributions (the technique is referred to as the “hybrid argument”). We formalize this
idea now by first defining computational indistinguishability.

Definition 2 Let X = {Xk} and Y = {Yk} be ensembles of distributions, where for
all k, Xk and Yk are distributions over the same space. X and Y are computationally

indistinguishable (written X
c
≡ Y) if the following is negligible (in k) for all ppt A:

|Pr [x← Xk;A(x) = 1]− Pr [y ← Yk;A(y) = 1]| . (4)

♦

We will sometimes be informal and refer to “distributions” instead of “ensembles of distri-
butions”.

3-4

As an example of how this notation may be used, we give an equivalent definition of
semantic security (for a single bit) in terms of computational indistinguishability. Namely,
let

Xk
def
= {(PK,SK)← KeyGen(1k);C ← EPK(0) : (PK,C)}

and
Yk

def
= {(PK,SK)← KeyGen(1k);C ← EPK(1) : (PK,C)}.

Then encryption scheme (KeyGen, E ,D) is semantically-secure (for encryption of a single

bit) if and only if {Xk}
c
≡ {Yk}.

Before continuing with our discussion of the “hybrid argument”, we note the following
useful properties of computational indistinguishability:

Claim 3 If X
c
≡ Y and Y

c
≡ Z then X

c
≡ Z.

Sketch of Proof (Informal) The proof relies on the triangle inequality (namely, the fact
that for any real numbers a, b, c we have |a − b| ≤ |a − b| + |b − c|) and the fact that the
sum of two negligible functions is negligible.

In fact, we can extend this claim as follows:

Claim 4 (Transitivity) Given polynomially many distributions X1, . . . ,X`(k) for which

Xi
c
≡ Xi+1 for i = 1, . . . , `(k)− 1, then X1

c
≡ X`(k)

Sketch of Proof (Informal) The proof again uses the triangle inequality along with the
fact that the sum of a polynomial number of negligible functions remains negligible.

Note that the claim does not hold for a super-polynomial number of distributions.
We now formalize the hybrid argument.

Claim 5 (Hybrid argument) Let X 1,X 2,Y1,Y2 be efficiently sampleable3 distributions

for which X 1 c
≡ Y1 and X 2 c

≡ Y2. Then (X 1,X 2)
c
≡ (Y1,Y2). (Note: if X = {Xk} and Y =

{Yk} are two distribution ensembles, the notation (X ,Y) refers to the distribution ensemble
{(Xk, Yk)} where the distribution (Xk, Yk) is defined by {x← Xk; y ← Yk : (x, y)}.)

Proof Instead of proving this by contradiction, we prove it directly. Let A be an arbi-
trary ppt algorithm trying to distinguish (X 1,X 2) and (Y1,Y2). We may construct a ppt

adversary A1 trying to distinguish X 1 and Y1 as follows:

A1(1
k, z)

Choose random x← X2
k

output A(z, x)

Clearly, A1 runs in polynomial time (here is where we use the fact that all our distributions

are efficiently sampleable). Since X 1 c
≡ Y1 we therefore know that the following must be

3A distribution ensemble X = {Xk} is efficiently-sampleable if we can generate an element according to
distribution Xk in time polynomial in k.

3-5

negligible:

∣
∣Pr

[
z ← X1

k : A1(z) = 1
]
− Pr

[
z ← Y 1

k : A1(z) = 1
]∣
∣ (5)

=
∣
∣Pr

[
z ← X1

k ;x← X2
k : A(z, x) = 1

]
− Pr

[
z ← Y 1

k ;x← X2
k : A(z, x) = 1

]∣
∣

=
∣
∣Pr

[
x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1

]
− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]∣
∣ ,

where the last line is simply a renaming of the variables.
We may similarly construct a ppt algorithm A2 trying to distinguish X 2 and Y2 that

runs as follows:
A2(1

k, z)

Choose random y ← Y1
k

Output A(y, z)

Here, since X 2 c
≡ Y2 we know that the following is negligible:

∣
∣Pr

[
z ← X2

k : A2(z) = 1
]
− Pr

[
z ← Y 2

k : A2(z) = 1
]∣
∣

=
∣
∣Pr

[
y ← Y1

k ; z ← X2
k : A(y, z) = 1

]
− Pr

[
y ← Y 1

k ; z ← Y 2
k : A(y, z) = 1

]∣
∣

=
∣
∣Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr

[
y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1

]∣
∣ .

Of course, what we are really interested in is how well A does at distinguishing (X 1,X 2)
and (Y1,Y2). We can bound this quantity as follows:

∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

=
∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]

+Pr
[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

≤
∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]∣
∣

+
∣
∣Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

(where we have again applied the triangle inequality). The last two terms are exactly
Equations (5) and (6), and we know they are negligible. Since the sum of two negligible
quantities is negligible, the distinguishing advantage of A is negligible, as desired.

This is called a “hybrid argument” for the following reason: Looking at the structure of
the proof, we introduced the “hybrid” distribution (Y 1,X 2) (which is not equal to either of

the distributions we are ultimately interested in) and noted that (X 1,X 2)
c
≡ (Y1,X 2) and

(Y1,X 2)
c
≡ (Y1,Y2) (this was the purpose of A1 and A2, respectively). Applying Claim 3

(which we essentially re-derived above) gives the desired result.
A similar argument can be used for combinations of poly-many ensembles instead of two

ensembles, but we omit the details. Furthermore, a corollary of the above is that if X
c
≡ Y

then polynomially-many copies of X are indistinguishable from polynomially-many copies
of Y. Formally, let `(k) be a polynomial and define X ` = {X`

k} as follows:

X`
k

def
= (

`(k) times
︷ ︸︸ ︷

Xk, . . . , Xk)

(and similarly for Y`). Then X ` c
≡ Y`.

3-6

Strictly speaking, Claim 5 is not quite enough to yield Theorem 2 directly. The problem
is the following: recall that if (KeyGen, E ,D) is a semantically-secure encryption scheme for
a single bit then the following ensembles are computationally indistinguishable:

Xk
def
= {(PK,SK) ← KeyGen(1k);C ← EPK(0) : (PK,C)}

Yk
def
= {(PK,SK)← KeyGen(1k);C ← EPK(1) : (PK,C)}.

But then applying the hybrid argument directly only tells us that the following are indis-
tinguishable:

(Xk, Xk) =

{
(PK,SK), (PK ′, SK ′)← KeyGen(1k)

C ← EPK(0);C ′ ← EPK′(0)
: (PK,C, PK ′, C ′)

}

(Yk, Yk) =

{
(PK,SK), (PK ′, SK ′)← KeyGen(1k)

C ← EPK(1);C ′ ← EPK′(1)
: (PK,C, PK ′, C ′)

}

;

here, encryption is done with respect to two different public keys, not a single key as
desired. Even so, the hybrid technique is essentially what is used to prove Theorem 2 and
we therefore refer to it as such. As a final remark, note that it is crucial in the proof of
Theorem 2 that an adversary can generate random encryptions4 as can be done in any
public-key encryption scheme. In particular, an analogue of Theorem 2 does not hold for
the case of private-key encryption, where an adversary may be unable to generate legal
ciphertexts corresponding to an unknown key.

4In fact, this directly parallels the requirement in Claim 5 that the distribution ensembles be efficiently
sampleable.

3-7

CMSC 858K — Advanced Topics in Cryptography February 5, 2004

Lecture 4

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 Summary

The focus of this lecture is efficient public-key encryption. In the previous lecture, we
discussed a public-key encryption scheme for 1-bit messages. However, to encrypt an `-bit
message, we can simply encrypt ` one-bit messages and send these (and we proved last
time that this remains secure in the case of public-key encryption). Here, we first describe
(briefly) how to combine public and private key encryption to obtain a public-key encryption
scheme with the efficiency of a private-key scheme (for long messages). Next, we describe
an efficient public key encryption scheme called El Gamal encryption [2] which is based on
a particular number-theoretic assumption rather than the general assumption of trapdoor
permutations. In the course of introducing this scheme, we discuss how it relies on the
Discrete Logarithm Problem and the Decisional Diffie-Hellman Assumption.

2 Hybrid Encryption

A hybrid encryption scheme uses public-key encryption to encrypt a random symmetric key,
and then proceeds to encrypt the message with that symmetric key. The receiver decrypts
the symmetric key using the public-key encryption scheme and then uses the recovered
symmetric key to decrypt the message.

More formally, let (KeyGen, E , D) be a secure public- key encryption scheme and (E ′,
D′) be a secure private-key encryption scheme. We can construct a secure hybrid encryption
scheme (KeyGen”, E ′′,D′′) as follows:

• KeyGen” is the same as KeyGen, generating a public key pk and a secret key sk.

• E ′′pk(m):

1. sk′ ← {0, 1}k

2. C1 ← Epk(sk
′)

3. C2 ← E
′

sk′(m)

• D′′

sk(C1, C2):

1. sk′ = Dsk(C1)

2. m = D′

sk′(C2)

The above scheme can be proven semantically-secure, assuming the semantic security of
the underlying public- and private-key schemes. However, we will not give a proof so here.

4-1

3 The El Gamal Encryption Scheme

3.1 Groups

Before describing the El Gamal encryption scheme, we give a very brief overview of the
group theory necessary to understand the scheme. We will need to concept of a finite,
cyclic group, so we first introduce the concept of a finite group (actually, we will introduce
what is known as an Abelian group, since we will not use non-Abelian groups in this class).

Definition 1 An Abelian group G is a finite set of elements along with an operation ∗
(written multiplicatively, although not necessarily corresponding to integer multiplication!)
such that:

Closure For all a, b ∈ G we have a ∗ b ∈ G. Since we are using multiplicative notation, we
also write a ∗ b as ab when convenient.

Associativity For all a, b, c ∈ G, we have (ab)c = a(bc).

Commutativity For all a, b ∈ G we have ab = ba.

Existence of identity There exists an element 1 ∈ G such that 1 ∗ a = a for all a ∈ G.
This element is called the identity of G.

Inverse For all a ∈ G there exists an element a−1 ∈ G such that aa−1 = 1.

♦

If n is a positive integer and a ∈ G, the notation an simply refers to the product of a with
itself n times. Just as we are used to, we have a0 = 1 and a1 = a for all a ∈ G. Let q = |G|
(i.e., the number of elements in G); this is known as the order of G. A useful result is the
following theorem:

Theorem 1 Let G be a finite Abelian group of order q. Then aq = 1 for all a ∈ G.

Proof We may actually give a simple proof of this theorem. Let a1, . . . , aq be the elements
of G, and let a ∈ G be arbitrary. We may note that the sequence of elements aa1, aa2, . . . , aaq

also contains exactly the elements of G (clearly, this sequence contains at most q distinct
elements; furthermore, if aai = aaj then we can multiply by a−1 on both sides to obtain
ai = aj which is not the case). So:

a1 · a2 · · · aq

= (aa1) · (aa2) · · · (aaq)

= aq(a1 · a2 · · · aq).

Multiplying each side by (a1 · · · aq)
−1, we see that aq = 1.

We mention the following easy corollary:

Corollary 2 Let G be a finite Abelian group of order q, and let n be a positive integer.
Then gn = gn mod q.

4-2

Proof Let n = nq mod q so that n can be written as n = aq + nq for some integer a. We
then have gn = gaq+nq = (ga)qgnq = gnq .

A finite group G of order q is cyclic if there exists an element g ∈ G such that the set
{g0, g1, . . . , gq−1} is all of G. (Note that gq = g0 = 1 by the above theorem, so that the
sequence would simply “cycle” if continued.) If such a g exists, it is called a generator of G.
As an example, consider the group � ∗

5 = {1, 2, 3, 4} under multiplication modulo 5. Since
42 = 1, the element 4 is not a generator. However, since 21 = 2, 22 = 4, and 23 = 3, element
2 is a generator and � ∗

5 is cyclic.
All the groups we are going to deal with here will be cyclic, and will additionally have

prime order (i.e., |G| = q and q is prime.) The following is a simple fact in such groups:

Lemma 3 If G is an Abelian group with prime order q, then (1) G is cyclic; furthermore,
(2) every element of G (except the identity) is a generator.

Proof We do not prove that G is cyclic, but instead refer the reader to any book on group
theory. However, assuming G is cyclic, we may prove the second part. Let g be a generator
of G, and consider an element h ∈ G \ {1}. We know that h = gi for some i between 1 and
q − 1. Consider the set G ′ = {1, h, h2, . . . , hq−1}. By the closure property, G ′ ⊆ G. On the
other hand, if hx = hy for some 1 ≤ x < y ≤ q − 1 then gxi = gyi. By the Corollary given
above, this implies that xi = yi mod q, or, equivalently, that q divides (y − x)i. However,
since q is prime and both (y − x) and i are strictly less than q, this cannot occur. This
implies that all elements in G ′ are unique, and hence h is a generator.

An important fact about a cyclic group G of order q is that given a generator g, every
element of h ∈ G satisfies h = gs for exactly one s between 0 and q − 1 (this follows
immediately from the definition of a generator). In this case, we say logg h = s (the
previous fact indicates that this is well-defined as long as g is a generator) and call s the
discrete logarithm of h to the base g. Discrete logarithms satisfy many of the rules you are
familiar with for logarithms over the reals; for example (always assuming g is a generator),
we have logg(h1h2) = logg h1 + logg h2 for all h1, h2 ∈ G.

For our applications to cryptographic protocols, we will consider groups of very large
order (on the order of q ≈ 2100 or more!). When dealing with such large numbers, it is
important to verify that the desired arithmetic operations can be done efficiently. As usual,
we associate “efficient” with “polynomial time”. The only subtlety here is that the running
time should be polynomial in the lengths of all inputs (and not their absolute value); so, for
example, computing gx for some generator g in some group G should require time polynomial
in |x| (equivalently, the number of bits needed to describe x) and |q|, rather than polynomial
in x and q. This clearly makes a big difference — an algorithm running in 2100 steps is
infeasible, while one running in 100 steps certainly is!

We will take it as a given that all the groups with which we will deal support efficient
“base” operations such as multiplication, equality testing, and membership testing. (Yet,
for some groups that are used in cryptography, verifying these properties is non-trivial!)
However, we do not assume that exponentiation is efficient, but will instead show that it
can be done efficiently (assuming that multiplication in the group can be done efficiently).

To see that this is not entirely trivial, consider the following naive algorithm to compute
gx for some element g in some group G (the exponent x is, of course, a positive integer):

4-3

exponentiate naive(g , x) {
ans = 1;

if x
?
= 0 return 1;

while(x ≥ 1){
ans = ans ∗ g;
x = x− 1;

}
return ans; }

(In the above algorithm, the expression ans ∗ g means multiplication in the group and not
over the integers.) However, this algorithm requires time O(x) to run (there are x iterations
of the loop), which is unacceptable and not polynomial time! However, we can improve this
by using repeated squaring. First, note that:

gx =

{

(g
x

2)2 if x is even

g(g
x−1

2)2 if x is odd
.

This leads us to the following algorithm for exponentiation:

exponentiate efficient (g, x) {

if (x
?
= 0) return 1;

tmp = 1, ans = g;
// we maintain the invariant that tmp ∗ ansx is our answer
while (x > 1) {

if (x is odd) {
tmp = tmp ∗ ans;
x = x− 1; }

if (x > 1) {
ans = ans ∗ ans;
x = x/2; }

}
return tmp ∗ ans; }

(Again, the “ ∗ ” in the above code refers to multiplication in the group, not over the
integers. However, expressions involving x are performed over the integers.) Note that in
each execution of the loop the value of x is decreased by at least half, and thus the number
of executions of this loop is O(log x) = O(|x|). Thus, the algorithm as a whole runs in
polynomial time.

From the above, we see that given a generator g and an integer x, we can compute
h = gx in polynomial time. What about the inverse problem of finding x given h and g?
This is known as the discrete logarithm problem which we define next.

3.2 The Discrete Logarithm Problem

The discrete logarithm problem is as follows: given generator g and random element h ∈ G,
compute logg h. For many groups, this problem is conjectured to be “hard”; this is referred

4-4

to as the discrete logarithm assumption which we make precise now. In the following, we
let GroupGen be a polynomial time algorithm which on input 1k outputs a description of
a cyclic group G of order q (with |q| = k and q not necessarily prime), and also outputs q
and a generator g ∈ G. (Note that GroupGen may possibly be deterministic.) The discrete
logarithm assumption is simply that the assumption that the discrete logarithm problem is
hard for GroupGen, where this is defined as follows:

Definition 2 The discrete logarithm problem is hard for GroupGen if the following is neg-
ligible for all ppt algorithms A:

Pr[(G, q, g) ← GroupGen(1k);h← G;x← A(G, q, g, h) : gx = h].

♦

Sometimes, if the discrete logarithm problem is hard for GroupGen and G is a group output
by GroupGen, we will informally say that the discrete logarithm problem is hard in G.

We provide an example of a GroupGen for which the discrete logarithm assumption is
believed to hold: Let GroupGen be an algorithm which, on input 1k, generates a random
prime q of length k (note that this can be done efficiently via a randomized algorithm), and
let G = � ∗

q. It is known that this forms a cyclic group of order q − 1 (not a prime). It is
also known how to efficiently find a generator g of G via a randomized algorithm which we
do not describe here. Let (G, q, g) be the output of GroupGen.

We now describe the El Gamal encryption scheme whose security is related to (but does
not follow from) the discrete logarithm assumption:

Key generation Gen(1k):
(G, q, g)← GroupGen(1k)
Choose x← � q; set y = gx

Output PK = (G, q, g, y) and SK = x

Encryption Epk(m) (where m ∈ G):
Pick r ← � q

Output 〈gr, yrm〉

Decryption Dsk(A,B) :
Compute m = B

Ax

Correctness of decryption follows from yrm
(gr)x = yrm

(gx)r = yrm
yr = m.

The discrete logarithm problem implies that no adversary can determine the secret
key given the public key (can you prove this?). However, this alone is not enough to
guarantee semantic security! In fact, we can show a particular group for which the discrete
logarithm assumption (DLA) is believed to hold, yet the El Gamal encryption scheme is
not semantically secure. Namely, consider groups � ∗

p for p prime, as discussed earlier. We
noted that the DLA is believed to hold in groups of this form. However, it is also known
how to determine in polynomial time whether a given element of � ∗

p is a quadratic residue
or not (an element y ∈ � ∗

p is a quadratic residue if there exists an x ∈ � ∗

p such that x2 = y).
Furthermore, a generator g of � ∗

p cannot be a quadratic residue. These observations leads
to a direct attack on the El Gamal scheme (we sketch the attack here, but let the reader

4-5

fill in the details or refer to [1, Section 9.5.2]): output (m0,m1) such that m0 is a quadratic
residue but m1 is not. Given a ciphertext 〈A,B〉, where A = gr and B = yrmb for some r,
we can determine in polynomial time whether yr is a quadratic residue or not (for example,
if A or y are quadratic residues then at least one of r, x is even and thus yr = yxr is also a
quadratic residue). But then by looking at B we can determine whether mb is a quadratic
residue or not (e.g., if yr is a non-residue and B is a residue, then it must be the case that
mb was not a quadratic residue), and hence determine which message was encrypted.

Evidently, then, we need need a stronger assumption about GroupGen in order to prove
that El Gamal encryption is semantically secure.

3.3 The Decisional Diffie-Hellman (DDH) Assumption

Informally, the DDH assumption is that it is hard to distinguish between tuples of the
form (g, gx, gy , gxy) and (g, gx, gy, gz), where g is a generator and x, y, z are random. More
formally, GroupGen satisfies the DDH assumption if the DDH problem is hard for GroupGen,
where this is defined as follows:

Definition 3 The DDH problem is hard for GroupGen if the following distributions are
computationally indistinguishable (cf. the definition from Lecture 3):

{(G, q, g) ← GroupGen(1k);x, y, z ← � q : (G, q, g, gx, gy , gz)}

and
{(G, q, g) ← GroupGen(1k);x, y ← � q : (G, q, g, gx, gy, gxy)}.

♦

We call tuples chosen from the first distribution “random tuples” and tuples chosen from
the second distribution “DH tuples”. (Note that this is an abuse of terminology, since there
exist tuples in the support of both distributions. But when we say that ~g is a random tuple
we simply mean that ~g was drawn from the first distribution above.) Also, if the DDH
assumption holds for GroupGen and G is a particular group output by GroupGen then we
informally say that the DDH assumption holds in G.

Security of the El Gamal encryption scheme turns out to be equivalent to the DDH
assumption. We prove the more interesting direction in the following theorem.

Theorem 4 Under the DDH assumption, the El Gamal encryption scheme is secure in the
sense of indistinguishability.

Proof (Note: what we really mean here is that if the DDH assumption holds for GroupGen,
and this algorithm is used in the key generation phase of El Gamal encryption as described
above, then that particular instantiation of El Gamal encryption is secure.)

Assume a ppt adversary A attacking the El Gamal encryption scheme in the sense of
indistinguishability. Recall this means that A outputs messages (m0,m1), is given a random
encryption of mb for random b, and outputs guess b′. We will say that A succeeds if b′ = b
(and denote this event by Succ), and we are ultimately interested in PrA[Succ].

4-6

We construct an adversary A′ as follows:

A′(G, q, g1, g2, g3, g4)

PK = (g1, g2)
run A(PK) and get messages (m0,m1)
b← {0, 1}
C = 〈g3, g4mb〉
run A(PK,C) to obtain b′

output 1 iff b′ = b

Let Rand be the event that (g1, g2, g3, g4) are chosen from the distribution of random
tuples, and let DH be the event that they were chosen from the distribution on DH tuples.
Since the DDH assumption holds in G and A′ is a ppt algorithm we know that the following
is negligible:

∣

∣Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ .

Next, we claim that Pr[A′ = 1|DH] = PrA[Succ]. To see this, note that when DH occurs
we have g2 = gx

1 , g3 = gr
1, and g4 = gxr

1 = gr
2 for some x and r chosen at random. But

then the public key and the ciphertext are distributed exactly as they would be in a real
execution of the El Gamal encryption scheme, and since A′ outputs 1 iff A succeeds, the
claim follows.

To complete the proof, we show that Pr[A′ = 1|Rand] = 1/2 (do you see why this
completes the proof?). Here, we know that g4 is uniformly distributed in G independent
of g1, g2, or g3. In particular, then, the second component of the ciphertext given to A is
uniformly distributed in G independent of the message being encrypted (and, in particular,
independent of b). Thus, A′ has no information about b — even an all-powerful A cannot
predict b in this case with probability different from 1/2 (we assume that A must always
output some guess b′ ∈ {0, 1}). Since A′ outputs 1 iff A succeeds, we may conclude that
Pr[A′ = 1|Rand] = 1/2.

References

[1] M. Bellare and P. Rogaway. Introduction to Modern Cryptography. Notes available from
http://www-cse.ucsd.edu/users/mihir/cse207/classnotes.html.

[2] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory 31(4): 469–472 (1985).

4-7

CMSC 858K — Advanced Topics in Cryptography February 10, 2004

Lecture 5

Lecturer: Jonathan Katz Scribe(s):

Rengarajan Aravamudhan
Morgan Kleene
Nan Wang
Aaron Zollman

1 Semantic Security May Not be Enough

The following trick can be played on the El-Gamal encryption scheme which, under the De-
cisional Diffie-Hellman Hypothesis (DDH) is semantically secure. We show how an attacker
can subvert a sealed-bid auction conducted using El-Gamal encryption, where the auction
is won by the bidder who submits the higher bid. Assume the auctioneer has public key
PK = (g, y = gx), and let the bid of the first bidder be m.

Bidder 1
C ← (gr, yr ·m)
(where r is random)

C=(C1,C2)
−→ Auctioneer decrypts m

Bidder 2
C ′ = (C1, C2 · α)
(where α = 2)

C′

−→ Auctioneer decrypts m′ = m · α

Although Bidder 2 has no idea what was bid (he doesn’t even know his own bid!), he is still
able to outbid bidder 1 by a factor of α.

The following system for verifying credit cards is also malleable. A user has a credit card
number C1, C2, C3, ..., C48 (where each Ci represents one bit) which is encrypted, bit-wise,
with the merchant’s public key pk and sent to the merchant as follows:

Epk(C1), Epk(C2), Epk(C3), ..., Epk(C48)

The merchant then immediately responds ACCEPT or REJECT, indicating whether the
credit card is valid. Now, an adversary need not decrypt the message to recover the credit
card: consider what happens if the first element of the above ciphertext is replaced by
Epk(0) (which an attacker can compute since the public key is available!) — if the message
is accepted by the merchant, the first bit of the credit card must be zero; if rejected, it is
one. Continuing in this way, the adversary learns the entire credit card number after 48
such attempts.

These two examples motivate the concept of malleability. Informally, an encryption
scheme is malleable if, given an encryption C of some message M , it is possible to construct
a different ciphertext C ′ decrypting to some “related” message M ′. Non-malleability pre-
cludes the attacks shown above (in particular). Attacks that are thematically similar to
the ones given above have been implemented [2], although they are much more complicated
than the above examples.

This motivates the development of stronger notions of security preventing the above
attacks. It turns out that non-malleability is (for the cases of interest here) equivalent [1]

5-1

to a security property which is simpler to define called security against chosen-ciphertext
attacks. We may further consider security against non-adaptive chosen-ciphertext attacks
(CCA1) or security against adaptive chosen-ciphertext attack (CCA2); we define both of
these now.

Definition 1 [IND-CCA2] An encryption scheme is secure against adaptive chosen-
ciphertext attacks (CCA2) if the following is negligible for all ppt adversaries A:

∣

∣

∣

∣

Pr

[

(pk, sk)← KeyGen(1k); (m0,m1)← A
Dsk(·)(pk);

b← {0, 1}; c ← Epk(mb); b
′ ← ADsk(·)(pk, c)

: b = b′
]

−
1

2

∣

∣

∣

∣

where A cannot query Dsk(c). ♦

We note that for non-adaptive chosen-ciphertext attacks (CCA1) the adversary is only
allowed to query Dsk(·) in the first stage (i.e., before being given the ciphertext c).

2 Zero-Knowledge Proofs

Toward our eventual goal of designing encryption schemes secure against chosen-ciphertext
attacks, we define a class of exchanges for which it holds that one party is able to convince
another that he holds some information without revealing the information itself. We first
review what kinds of computation we consider feasible and then discuss the actual exchanges
that have been devised.

2.1 NP-Completeness

The kinds of computations that can be carried out efficiently are typically considered to be
those that can be done in polynomial time. We consider computational problems as the
recognition of a set of strings, referred to as a language. We say that a Turing machine M
accepts a language L if: x ∈ L⇔M(x) outputs “accept”. We will simply let a “1” signify
acceptance.

There are two sets of computational problems which are of special importance. The
first is the set of languages that can be decided in polynomial time, denoted P . Formally,
a language L is in P if there exists a Turing machine M which takes at most p(|x|) steps
for some polynomial p (where |x| denotes the length of its input string x), and accepts if
and only if x ∈ L. The class NP is the set of languages for which there exist proofs of
membership that can be checked in polynomial time. Formally, a language L is in the class
NP if there exists a polynomial-time Turing machine M 1 such that:

x ∈ L⇔ there exists a string wx s.t. M(x,wx) = 1.

A wx of this sort is called a witness for x. One can think of this as an efficiently-verifiable
“proof” that x ∈ L.

Intuitively, if we can use a solution to problem A to solve problem B it seems as if
problem A is in some sense “(at least) as hard as” problem B. This is formalized by the

1By convention, the running time of a Turing machine taking multiple inputs is measured as a function

of the length of its first input.

5-2

notion of a polynomial-time reduction between two languages. We say that language L1 is
poly-time reducible to language L2 if there exists a function f : {0, 1}∗ → {0, 1}∗ such that:
(1) f is computable in polynomial time, and (2) x ∈ L1 if and only if f(x) ∈ L2. We will
sometimes abbreviate this by writing L1 ≤p L2. Note that if L1 ≤p L2 and L2 ∈ P (i.e., L2

can be decided in polynomial time) then L1 can be decided in polynomial time using the
following algorithm: Given a string x, compute x′ = f(x) and then decide whether x′ ∈ L2.
Similarly, if L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP as well.

There are languages which, in a certain sense, are “the hardest languages” in NP in
the sense that all problems in NP are poly-time reducible to them. These problems are
called NP complete. Note that if an NP -complete problem could be shown to be in P , then
all of NP would be in P , by the discussion above. A classic example of an NP -complete
language is satisfiability (i.e., given a boolean formula does there exist an assignment of
truth values to variables such that the formula evaluates to true). There are a variety of
other well-known NP -complete problems; the ones we will encounter in this class are:

• Hamiltonian Cycle: This is the lnaguage { G : G is a graph which contains a Hamilton
cycle }. (A Hamiltonian cycle is a cycle in which each vertex appears exactly once.)

• 3-colorability: This is the language { G = (V,E) : G is a graph and there exists a
function ϕ : V → {Red, Green, Blue} such that if {u, v} ∈ E, ϕ(u) 6= ϕ(v) }

Looking (way) ahead, we will eventually show a proof system for all of NP by showing a
proof system for a particular NP -complete language.

2.2 Non-Interactive Proof Systems

We first informally discuss the notion of an interactive proof system. Here we have a prover
P and a polynomial-time verifier V who both have some common input x, and the prover
wants to convince V that x ∈ L for some agreed-upon language L. The prover will attempt
to do this by interacting with the verifier in multiple communication rounds. Informally,
we would like that if x ∈ L then the prover can always make the verifier accept, while if
x 6∈ L then no matter what the prover does the verifier should reject with high probability.

We first give two trivial examples: we claim that all languages in P have an interactive
proof system with 0 rounds. Here, P does not communicate with V at all, but V merely
decides on its own whether x ∈ L (it can do this since L ∈ P). Next, we claim that any
L ∈ NP has a 1-round interactive proof system in which P simply sends to V the witness
for x (assuming x ∈ L), and V verifies this. Note that the definition of NP implies that
V will always accept if x ∈ L (assuming P wants to make V accept) and that P can never
fool V into accepting if x 6∈ L.

Things get more interesting when we allow more rounds of interaction (and languages
outside of NP can be shown to have interactive proof systems), but this is for a class in
complexity theory. We will be more interested in strengthening the model of interactive
proofs so as to require also that V does not learn anything from interacting with the prover
other than the fact that x ∈ L. So far we have described a scheme that does not specify
what V may learn from the interaction. The below definition is motivated by the desire to
let V ascertain with high probability whether a particular string is in its language of interest
without actually learning anything about why it is in the language. To put it another way, V

5-3

should not learn anything from P that he could not have figured out himself. We formalize
this now for the case of non-interactive proofs (where there is additionally a common random
string available to both parties), and later in the course we will formalize it for interactive
proofs. See [3, 4] for more details.

Definition 2 A pair of ppt algorithms2 (P, V) is a non-interactive zero-knowledge (NIZK)
proof system for a language L ∈ NP if:

Completeness For any x ∈ L (with |x| = k) and witness w for x, we have:

Pr
[

r ← {0, 1}poly(k);π ← P (r, x, w) : V (r, x, π) = 1
]

= 1.

In words: a random string r is given to both parties. P is given r, x, and the witness
that x ∈ L, and produces a proof π which he sends to V . The verifier, given r, x, and
π, decides whether to accept or reject. The above just says that if x ∈ L and everyone
is honest, then V always accepts.

Soundness If x /∈ L then ∀P ∗ (even all-powerful P ∗), the following is negligible (in |x| = k):

Pr
[

r ← {0, 1}poly(k);π ← P ∗(r, x) : V (r, x, π) = 1
]

.

Zero-knowledge There exists a ppt simulator S such that for all x ∈ L (with |x| =
k, the security parameter) and any witness w for x, the following distributions are
computationally indistinguishable:

1. {r ← {0, 1}poly(k);π ← P (r, x, w) : (r, x, π)}

2. {(r, π) ← S(x) : (r, x, π)}.

♦

The last condition restricts the information V may obtain from P . Intuitively, it says that if
V has “learned” anything from interacting with P he could also have learned it by himself,
using the polynomial-time simulator S.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. Crypto ’98.

[2] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS. Crypto ’98.

[3] M. Blum, P. Feldman, and S. Micali. Non-interactive Zero-Knowledge and its Applica-
tions. STOC ’88.

[4] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University
Press, 2001.

2Here, we require that P run in probabilistic polynomial time as well, since we are going to eventually

want to use P to construct efficient cryptographic protocols!

5-4

CMSC 858K — Advanced Topics in Cryptography February 12, 2004

Lecture 6

Lecturer: Jonathan Katz Scribe(s):
Omer Horvitz Zhongchao Yu
John Trafton Akhil Gupta

1 Introduction

In this lecture, we show how to construct a public-key encryption scheme secure against
non-adaptive chosen-ciphertext attacks, given a semantically-secure public-key encryption
scheme and an adaptively-secure non-interactive zero-knowledge proof system (in the com-
mon random string model).

2 Adaptively-Secure Non-Interactive Zero-Knowledge

We begin with a definition of a basic case of non-interactive zero-knowledge.

Definition 1 A pair of ppt algorithms (P,V) is a non-interactive zero-knowledge (NIZK)
proof system for a language L ∈ NP if there exists some polynomial poly such that:

1. Completeness (for x ∈ L, P generates proofs that V accepts): For all x ∈ L ∩ {0, 1}k

and all witnesses w for x,

Pr[r ← {0, 1}poly(k) ; Π← P(r, x, w) : V(r, x,Π) = 1] = 1.

2. Soundness (for x 6∈ L, no prover can generate proofs that V accepts with better than
negligible probability): For all x ∈ {0, 1}k \L and all (possibly unbounded) algorithms
P∗, the following is negligible in k:

Pr[r ← {0, 1}poly(k) ; Π← P∗(r, x) : V(r, x,Π) = 1].

3. Zero-knowledge (for x ∈ L, the view of any verifier can be efficiently simulated without
knowledge of a witness): There exists a ppt algorithm Sim such that for any x ∈
L ∩ {0, 1}k and any witness w for x, the following ensembles are computationally
indistinguishable:

(1)
{

r ← {0, 1}poly(k) ; Π← P(r, x, w) : (r, x,Π)
}

k

(2) {(r,Π)← Sim(x) : (r, x,Π)}k .

♦

For our purposes, we need to strengthen the definition in two ways. In the soundness
requirement, we would like to also protect against a prover who chooses x 6∈ L after seeing
the common random string r. In the zero-knowledge requirement, we would like to make
the simulator’s job a little harder by making it output a simulated common random string

6-1

r first, and only then supplying it with an x ∈ L for which it needs to generate a simulated
proof. In particular, such an x may be chosen adaptively (by an adversary, say) based on
r. In the following, we use PrE[A] to denote the probability that event A occurs in the
probabilistic experiment E.

Definition 2 A pair of ppt algorithms (P,V) is an adaptive, non-interactive zero-knowledge
(aNIZK 1) proof system for a language L ∈ NP if there exists a polynomial poly such that:

1. Completeness: Same as above.

2. Soundness (now, the cheating prover may choose x 6∈ L after seeing r): For all
(possibly unbounded) algorithms P∗, the following is negligible in k:

Pr
[

r← {0, 1}poly(k) ; (x,Π)← P∗(r) : V(r, x,Π) = 1 ∧ x ∈ {0, 1}k \ L
]

.

3. Zero-knowledge (simulator must output r first, is then given x, and asked to produce
a simulated proof): Let (Sim1,Sim2), (A1, A2) be a pair of two-staged algorithms (we
may assume that the first stage outputs some state information which is passed as
input to the second stage; this will be implicit). Consider the following experiments:

Game ZKreal Game ZKsim

r← {0, 1}poly(k)

(x,w)← A1(r) (x ∈ L ∩ {0, 1}k)
Π← P(r, x, w)
b← A2(r, x,Π)

r← Sim1(1
k)

(x,w)← A1(r) (x ∈ L ∩ {0, 1}k)
Π← Sim2(x)
b← A2(r, x,Π)

We require that there exist a ppt simulator (Sim1,Sim2) such that for any ppt algo-
rithm (A1, A2) the following is negligible in k:

|PrZKreal
[A2 outputs 0]− PrZKsim

[A2 outputs 0]| .

Equivalently, the “real” game ZKreal is computationally indistinguishable from the
“simulated” game ZKsim. (In other words, the adversary cannot tell whether it is
participating in the first or the second experiment (except with negligible probability).
A2’s output can be thought of as its guess towards which experiment it is in. This
means that the simulator is able to simulate the adversary’s view in the real execution.)

♦

To simplify the notation a little, we will usually drop the stage identifier for A; when
we refer to A’s output in the experiment, we will mean A2’s output.

3 A Public-Key Encryption Scheme Secure Against Non-

Adaptive Chosen-Ciphertext Attacks

Let (Gen, E ,D) be a public-key encryption scheme and (P,V) be an adaptively-secure NIZK
proof system for languages in NP. The following construction is due to Naor and Yung [1].

1This notation is non-standard.

6-2

Gen
∗(1k)

(pk1, sk1)← Gen(1k);
(pk2, sk2)← Gen(1k);

r ← {0, 1}poly(k);
pk∗ = (pk1, pk2, r);
sk∗ = sk1

E∗(pk1,pk2,r)(m)

w1, w2 ← {0, 1}
∗;

c1 = Epk1
(m;w1);

c2 = Epk2
(m;w2);

Π← P(r, (c1, c2), (w1, w2,m));
Output (c1, c2,Π)

D∗

sk1
(c1, c2,Π)

If V(r, (c1, c2),Π) = 0
Output ⊥;

else
Output Dsk1

(c1)

A few words of explanation are due here. For key generation, we use the underlying
key-generation algorithm to produce two pairs of (public, private) keys, publish the public
keys and a random string r (to serve as the common random string for the proof system),
and keep the first underlying private key as our private key (we discard the second private
key). For encryption, we use the underlying algorithm to encrypt the given message m

twice, under both pk1 and pk2, with the random tapes of the encryption algorithm fixed to
w1, w2, respectively.2 (For a probabilistic algorithm A(·), the notation A(·;w) is used to
denote that A’s random tape is fixed to a particular w ∈ {0, 1}∗.) We then use our prover
to generate a proof that (c1, c2) are encryptions of the same message under pk1, pk2 in the
underlying scheme; i.e., (c1, c2) ∈ L where

L = {(c1, c2) |∃m,w1, w2 such that c1 = Epk1
(m;w1), c2 = Epk2

(m;w2)} ,

using w1, w2, and m as witnesses. Note that L ∈ NP. We send the ciphertexts and the
proof to the receiver. For decryption, we use the underlying decryption algorithm on the
first ciphertext, if the provided proof verifies correctly.

Theorem 1 Assuming that (Gen, E ,D) is semantically secure and that (P,V) is an adaptively-
secure NIZK proof system, (Gen

∗, E∗,D∗) is secure against non-adaptive (“lunchtime”3)
chosen-ciphertext attacks (i.e., is CCA1 secure).

The remainder of these notes is the beginning of a proof of this theorem (we continue the
proof next lecture). Let A be a two-staged ppt algorithm, where the first stage has access
to an oracle. Consider the following two experiments (their differences are in boldface):

Game CCA10 Game CCA11

(pk1, sk1), (pk2, sk2)← Gen(1k)

r← {0, 1}poly(k)

pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2)
Π← P(r, (c1, c2), (w1, w2,m0))
b← A(pk∗, c1, c2,Π)

(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m1;w1), c2 = Epk2

(m1;w2)
Π← P(r, (c1, c2), (w1, w2,m1))
b← A(pk∗, c1, c2,Π)

To prove the scheme CCA1 secure, we need to show that A cannot distinguish the above
two games; i.e.,to show that the following is negligible: |PrCCA10

[b = 0]− PrCCA11
[b = 0]|.

2The notation w1 ← {0, 1}∗ just means that a “long enough” random string is chosen.
3That is, the adversary is assumed to be able to “play” with the decryption oracle while people are out

for lunch, but not afterward when he gets the challenge ciphertext.

6-3

To that effect, we introduce a sequence of intermediate games, and show that A cannot
distinguish each game from its subsequent one; the theorem will then follow.

Let Sim = (Sim1,Sim2) be the simulator for our proof system. In the first game, we
replace the random string and legitimate proof of game CCA10 with a simulated random
string and simulated proof. Once again, the differences between the new game and game
CCA10 are highlighted.

Game 1
(pk1, sk1), (pk2, sk2)← Gen(1k)
r← Sim1(1 �)
pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2)
Π← Sim2((c1, c2))
b← A(pk∗, c1, c2,Π)

Claim 2 |PrCCA10
[A outputs 0]− Pr1[A outputs 0]| is negligible.

Proof By reduction to the zero-knowledge property of the proof system: we use A to
construct an algorithm B that attempts to distinguish real from simulated proofs.

B(1k)
Receive r as first-stage input;
(pk1, sk1), (pk2, sk2)← Gen(1k);
pk∗ = (pk1, pk2, r);
sk∗ = sk1;

(m0,m1)← AD
∗

sk∗
(·)(pk∗); // note that B has no trouble

// simulating the decryption oracle for A

w1, w2 ← {0, 1}
∗;

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2);
Output ((c1, c2), (w1, w2,m0)) as first-stage output;
Receive Π as second-stage input;
b← A(pk∗, c1, c2,Π);
Output b as second-stage output.

Now, when the inputs to B are a random string r and a real proof Π, then A’s view in
the above experiment is precisely its view in game CCA10, and so PrZKreal

[B outputs 0] =
PrCCA10

[A outputs 0]. On the other hand, when the inputs to B are a simulated string and a
simulated proof, A’s view in B is precisely its view in game 1, and so PrZKsim

[B outputs 0] =
Pr1[A outputs 0]. Since |PrZKreal

[B outputs 0]− PrZKsim
[B outputs 0]| is negligible (since

the proof system is adaptively-secure NIZK), we have that

|PrCCA10
[A outputs 0]− Pr1[A outputs 0]|

is negligible as well.

The second game differs from game 1 in that it does not double-encrypt m0, but instead
encrypts m0 once and m1 once.

6-4

Game 2
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = E � � 2

(m1; w2)
Π← Sim2((c1, c2))
b← A(pk∗, c1, c2,Π)

Note that in the above, the simulator is given as input encryptions of two different mes-
sages. Such an input is not in L, and in general there is not much we can say about the
simulator’s output in this case. However, we will see that in this particular case the game is
indistinguishable to A because the semantic security of the underlying encryption scheme
implies that encryptions of m0 are indistinguishable from encryptions of m1. Of course,
this will require a formal proof.

Claim 3 |Pr1[A outputs 0]− Pr2[A outputs 0]| is negligible.

Proof We use A to construct B that attempts to break the semantic security of the
underlying scheme. Recall that B is given a public key, outputs two messages (m0,m1),
is given the encryption of one of these, and has to guess which one. But B does not have
access to a decryption oracle.

B(pk)
Set pk2 = pk;
(pk1, sk1)← Gen(1k);
r ← Sim1(1

k);
pk∗ = (pk1, pk2, r), sk∗ = sk1;

(m0,m1)← AD
∗

sk∗
(·)(pk∗); // note that B has no trouble

// simulating the decryption oracle for A

Output (m0,m1);
Receive c2 (an encryption of either m0 or m1 using (unknown) random tape w2);
w1 ← {0, 1}

∗;
c1 = Epk1

(m0;w1);
Π← Sim2((c1, c2));
b← A(pk∗, c1, c2,Π);
Output b.

Now, when c2 is an encryption of m0, then A’s view above is precisely its view in game 1.
On the other hand, when c2 is an encryption of m1, then A’s view above is precisely its view
in game 2. Therefore, the probability that A distinguishes game 1 from game 2 is precisely
the probability that B distinguishes an encryption of m0 from an encryption of m1, which
is negligible by the semantic security of the underlying encryption scheme.

In the same way as above, we would now like to “switch” c1 from being an encryption
of m0 to being an encryption of m1. Here, however, a potential problem arises! To prove

6-5

a claim analogous to Claim 3, we would need to construct some adversary B that gets
pk = pk1 and then has to distinguish whether the ciphertext c1 it receives is an encryption
of m0 or m1. But, in order to do this it has to somehow simulate a decryption oracle for
A — and this seems to require sk1, which B does not have! (If B has sk1 then it would
be easy for B to break semantic security of the scheme. . . .) So, we will have to do a little
more work before continuing.

Let Fake be the event that A submits a query (c1, c2,Π) to its decryption oracle (in
stage 1) such that Dsk1

(c1) 6= Dsk2
(c2) but V(r, (c1, c2),Π) = 1. Note that Π is then a

valid-looking proof for a false statement (since (c1, c2) 6∈ L).

Claim 4 Pr2[Fake] is negligible.

Proof First, note that Pr2[Fake] = Pr1[Fake]. This is because A submits oracle queries
only in its first stage, and up to that stage the games are identical.

Next, we show that |Pr1[Fake]− PrCCA10
[Fake]| is negligible. Up to A’s first stage, the

games differ only in r being a random string or a simulated string. Construct an algorithm
B that attempts to distinguish random from simulated strings, as follows:

B(r)
(pk1, sk1), (pk2, sk2)← Gen(1k);
pk∗ = (pk1, pk2, r);

Run AD
∗

sk∗
(·)(pk∗), simulating the oracle for A normally except that

if for any decryption query (c1, c2,Π) it is the case that
V(r, (c1, c2),Π) = 1 but Dsk1

(c1) 6= Dsk2
(c2),

then output 1 and stop (note that now B does not throw away sk2);
Otherwise, once A is done with its first stage simply output 0

Now, PrZKsim
[B outputs 0] = Pr1[Fake]. Similarly, PrZKreal

[B outputs 0] = PrCCA10
[Fake].

Since |PrZKreal
[B outputs 0]− PrZKsim

[B outputs 0]| is negligible (since the proof system is
adaptively-secure NIZK), we have that |Pr1[Fake]− PrCCA10

[Fake]| is negligible as well.
Finally, note that PrCCA10

[Fake] is negligible. This is because Fake occurs when A

produces a valid proof for a (c1, c2) 6∈ L, which can only happen with a negligible probability
because of the soundness of the NIZK proof system (note that r now is a truly random
string). The claim follows.

We pick up the proof from here in the next lecture. Informally, the next game we
introduce differs from game 2 only in that sk2 is used for decryption instead of sk1. The
adversary’s view in the games only differs if Fake occurs, which happens with negligible
probability. All that’s left to be done is to switch c1 to an encryption of m1 (similar to
the introduction of game 2), switch the decryption key back to sk1, and then go back to a
random string and a real proof (similar to the introduction of game 1). This gets us back
to game CCA11 as desired, and will complete the proof.

References

[1] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In Proceedings of the ACM Symposium on the Theory of Computing,
pages 427-437, 1990.

6-6

CMSC 858K — Advanced Topics in Cryptography February 17, 2004

Lecture 7

Lecturer: Jonathan Katz Scribe(s):

Nagaraj Anthapadmanabhan
Minkyoung Cho
Ji Sun Shin
Nick L. Petroni, Jr.

1 Introduction

In the last set of lectures, we introduced definitions of adaptively-secure non-interactive zero
knowledge and semantically-secure encryption. Based on these, we presented a construction
of a public-key encryption scheme secure against non-adaptive chosen-ciphertext attacks
(CCA1). This encryption scheme was proposed by Naor and Yung in 1990 [3].

In this lecture, we complete the proof of non-adaptive chosen-ciphertext security for
the Naor-Yung construction from the previous lecture. Next, we show that the scheme is
not secure against adaptive chosen-ciphertext attacks by showing a counterexample; we
also examine where the proof breaks down. Then, we introduce the definition of a digital
signature scheme and the notion of security for a one-time strong signature scheme. Finally,
we present a public key encryption scheme secure against adaptive chosen-ciphertext attacks
(CCA2). This encryption scheme was constructed by Dolev, Dwork, and Naor in 1991 [1].

2 Naor-Yung Construction

The Naor-Yung construction relies on an underlying semantically-secure public-key encryp-
tion scheme (Gen, E ,D) and an adaptively-secure non-interactive zero-knowledge proof sys-
tem (P,V). Given these, the scheme is defined as follows:

Gen∗(1k): (pk1, sk1)← Gen(1k)
(pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r)
sk∗ = sk1

E∗(pk1,pk2,r)(m): pick w1, w2 ← {0, 1}
∗

c1 ← Epk1
(m;w1)

c2 ← Epk2
(m;w2)

Π← P (r, (c1, c2) , (m,w1, w2))
output (c1, c2,Π)

D∗
sk1

(c1, c2,Π): if V (r, (c1, c2) ,Π) = 0 then (Verify proof)

output ⊥
else

output Dsk1
(c1)

7-1

2.1 CCA1-Security

Theorem 1 Assuming (Gen, E ,D) is a semantically-secure encryption scheme and (P,V) is
an adaptively-secure NIZK proof system, then (Gen∗, E∗,D∗) is secure against non-adaptive
chosen-ciphertext attacks.

Recall that in a CCA1 attack an adversary is given access to a decryption oracle before
choosing two messages. He does not, however, have access to this oracle after being pre-
sented the ciphertext (which he then has to use to guess which message was encrypted).
The formal definition is as follows:

Definition 1 An encryption scheme (Gen, E ,D) is secure against chosen-ciphertext attacks
(“CCA1-Secure”) if the following is negligible for all ppt algorithms A:

∣

∣

∣
Pr[(pk, sk)← Gen(1k); (m0,m1)← ADsk(·)(pk); b← {0, 1};

C ← Epk(mb); b′ ← A(pk,C) : b = b′]
∣

∣−
1

2
.

♦

We provide here the remainder of the proof of Theorem 1, noting where we left off last
lecture. Recall that the idea behind the proof is as follows. We construct a set of games that
differ slightly from each other. We show at each step, with the construction of each new
game, that the ability of the adversary to distinguish between the two games is negligible (or,
in other words, the games are computationally indistinguishable). Transitivity then implies
that the first and last games are indistinguishable. But the first game will correspond to
the view of an adversary when m0 is encrypted, while the final game will correspond to the
view of an adversary when m1 is encrypted; thus, this completes the proof.

For the six different games, informal descriptions are as follows:

• Game 0: This is the real game, with the adversary getting an encryption of m0.

• Game 1: Like Game 0 except that instead of (P,V), its simulator is used to provide
the proof Π.

• Game 2: Like Game 1 except that c2 is computed as an encryption of m1.

• Game 2′: Like Game 2 except use sk2 to decrypt instead of sk1.

• Game 3: Like Game 2′ except that c1 is computed as an encryption of m1.

• Game 3′ Like Game 3 except use sk1 to decrypt instead of sk2.

• Game 4: Like Game 3′ except use (P,V) to provide the proof Π.

Note that Game 4 corresponds exactly to the real game when the adversary gets an encryp-
tion of m1.
Proof of Theorem 1: We first considered the following two games. In each game the
adversary is given a pk based on two valid runs of Gen along with a value r. The adversary,
with the help of a decryption oracle, then outputs two messages and has to guess which

7-2

of those messages was encrypted. The only difference between the two games is that in
Game 1 the values for r and Π come from a simulator (and are not a true random string
and a real proof, respectively). However, we claim that the probability of the adversary’s
guess being b′ = 0 is the essentially same in each case (i.e., only negligibly different).

Game 0 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m0;w2)

Π← P (r, (c1, c2) , (m,w1, w2))

b← A(c1, c2,Π)

Game 1 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← Sim1(1
k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m0;w2)

Π← Sim2(c1, c2)

b← A(c1, c2,Π)

Claim 2 Let Pr0[·] and Pr1[·] represent the probability of event · in games 0 and 1 respec-
tively. Then |Pr0[b = 0]− Pr1[b = 0]| is negligible.

Proof Summary from last time. To show that the adversary’s choice is not affected by
the use of a simulator, the only change from Game 0 to Game 1, we showed that if such
a difference could be detected by the adversary then the adversary could be used by an-
other adversary, A′, to distinguish real proofs from simulated proofs. Using the adversary
who can distinguish between games 0 and 1, A′ can easily simulate the decryption ora-
cle, obtain messages to encrypt and pass on for a proof, and give the proof to A along
with valid ciphertext. The advantage of A′ in distinguishing real/simulated proofs is then
|Pr0[b = 0]− Pr1[b = 0]|, which is negligible by the security of (P,V) as an adaptively-secure
NIZK proof system.

We then made a change to Game 1, where we encrypt message m1 to get c2, and called this
Game 2.

Game 2 :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m1;w2)

Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Claim 3 Let Pr1[·] and Pr2[·] represent the probability of event · in games 1 and 2 respec-
tively. Then |Pr1[b = 0]− Pr2[b = 0]| is negligible.

Proof Summary from last time. As with the previous claim, we wish to show that the
existence of an adversary who can distinguish between the two games is an impossibility.
This time, instead of the zero-knowledge property, we attacked the semantic security of the

7-3

underlying encryption scheme. Specifically, we constructed an adversary A ′ who wishes to
guess which of two messages he generated was encrypted with a given key. To achieve his
goal, A′ uses the adversary who can distinguish between games 1 and 2 to pick two messages.
A′ passes these on directly and then gets back an encrypted message that is either m0 or
m1. Giving this to A as c2 (note that A′ has no problem running the simulator), we see
that the advantage of A′ is exactly |Pr1[b = 0]− Pr2[b = 0]|. And this must be negligible
by semantic security of the underlying encryption scheme.

We next defined an event Fake as the event that A submits (c1, c2,Π) to the decryption
oracle with Dsk1

(c1) 6= Dsk2
(c2), but V(r, (c1, c2),Π) = 1. This represents the event where

the adversary is able to trick the verifier into returning true on a bad pair of ciphertexts
(i.e., a pair not in the language). We continued with the claim that the probability of Fake

occurring in Game 2 is negligible.

Claim 4 Pr2[Fake] is negligible.

Proof Since Fake has to do with the use of the decryption oracle, we note that the only
important event from A’s perspective at the point he uses the oracle is the generation of pk∗.
Furthermore, we note that pk∗ is created identically in games 1 and 2. Therefore Pr1[Fake] =
Pr2[Fake]. Last time, we went on to show that |Pr1[Fake]− Pr0[Fake]| is negligible by the
zero-knowledge property of the proof system and that Pr0[Fake] is negligible because of the
soundness of the proof system. Therefore Pr2[Fake] is negligible.

At this point, we continue our proof from last time (and begin the new material from
this lecture). The proof continues by constructing another game, Game 2′, which is the
same as Game 2 except we use sk2 to decrypt instead of sk1 (in the obvious way).

Game 2’ :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r← Sim1(1

k)

pk∗ = (pk1, pk2, r); sk∗ = sk2

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m1;w2)
Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Corollary 5 |Pr2′ [b = 0]− Pr2[b = 0]| is negligible.

Proof From an adversary’s point of view, a difference between Game 2 and Game 2 ′ occurs
only if the event Fake occurs. This is because, as long as both c1 and c2 are encryptions of
the same message, decryption using sk1 or sk2 will make no difference. It is not hard to see
that Pr2[Fake] = Pr2′ [Fake]. Since in either game the event Fake occurs with only negligible
probability, the corollary follows.

We now modify Game 2′, encrypting m1 for both c1 and c2, and call this Game 3.

7-4

Game 3 :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk2

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m1;w1) ; c2 ← Epk2

(m1;w2)

Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Claim 6 |Pr3[b = 0]− Pr2′ [b = 0]| is negligible.

Proof We note that the argument used in this proof is similar to the one used in between
games 1 and 2. Assume that there exists a ppt adversary A such that |Pr3[b = 0] −
Pr2′ [b = 0]| is NOT negligible. We can then construct an adversary A′(pk1) which breaks
the semantic security of the underlying encryption scheme, thus generating a contradiction,
as follows:

A′(pk1) :

(pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk2

Run ADsk∗(·)(pk) until it outputs (m0,m1)
Query Epk1,b(m0,m1) to get c1

c2 ← Epk2
(m1)

Π← Sim2(c1, c2)
Output A(c1, c2,Π)

Note that A′(pk1) is ppt because A is ppt. Also, it is possible for A′ to simulate the
decryption oracle for A: A′ can decrypt using sk2 since (pk2, sk2) is generated locally by
A′. Next, we can see that if c1 = Epk1

(m0), then this becomes equivalent to Game 2’; if
c1 = Epk1

(m1), then this becomes equivalent to Game 3. So, A′ distinguishes encryptions
of m0 from encryptions of m1 with probability |Pr3[b = 0] − Pr2′ [b = 0]|, which must be
negligible by semantic security of the underlying encryption scheme.

We next imagine a game Game 3′ in which we revert back to using sk1 to decrypt rather
than sk2. As in the proof of indistinguishability between Game 2 and Game 2′, it is not
hard to see that Game 3′ is indistinguishable from Game 3.

We next construct another game, Game 4, in which we switch back to real proofs from
simulated proofs.

7-5

Game 4 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m1;w1); c2 ← Epk2

(m1;w2)

Π← P(r, (c1 , c2), (w1, w2))

b← A(c1, c2,Π)

So, Game 4 is basically the actual situation where the adversary gets a real encryption of
m1 along with a real proof.

Claim 7 |Pr4[b = 0]− Pr3[b = 0]| is negligible

Proof The proof is exactly analogous to that used in studying the transition from Game 0
to Game 1. As there, if an adversary could distinguish between the two games, it could be
used by another adversary to distinguish real from simulated proofs. However, this violates
the (adaptive) zero-knowledge property of the underlying proof system.

From the sequence of preceding claims, we can conclude that |Pr4[b = 0] − Pr0[b = 0]|
is negligible. But since the final game is just the real game when the adversary gets an
encryption of m1, and the original game is just the real game when the adversary gets an
encryption of m0, we see that we have proved that (Gen∗, E∗,D∗) is secure against non-
adaptive chosen-ciphertext attacks.

2.2 CCA2-Security

In this section, we will examine why the Naor-Yung construction is not secure against
adaptive chosen-ciphertext attacks by giving a counter-example. Recall the formal definition
of such attacks:

Definition 2 An encryption scheme (Gen, E ,D) is secure against adaptive chosen-ciphertext
attacks (“CCA2-Secure”) if the following is negligible for all ppt algorithms A:

∣

∣

∣
Pr[(pk, sk)← Gen(1k); (m0,m1)← ADsk(·)(pk); b← {0, 1};

C ← Epk(mb); b′ ← ADsk(·)(pk,C) : b = b′]
∣

∣

∣
−

1

2
,

where A cannot query Dsk(C). ♦

Theorem 8 The Naor-Yung scheme (Gen∗, E∗,D∗) is not secure against adaptive chosen-
ciphertext attacks (in general). More precisely, for any semantically-secure encryption
scheme (Gen, E ,D) there exists an adaptively-secure NIZK proof system (P,V) such that
the resulting Naor-Yung construction is demonstrably insecure against adaptive chosen-
ciphertext attacks.

7-6

Proof Let (P ′,V ′) be any adaptively-secure NIZK proof system. Define the proof system
(P,V) as follows:

P(r, (c1, c2), (w1, w2)) :

Output P ′(r, (c1, c2), (w1, w2))|0

V(r, (c1, c2),Π|b) :

Output V ′(r, (c1, c2),Π)

I.e., we introduce a spurious bit in P and have V ignore it. (here, “|” denotes concatenation).
It is not hard to show that (P,V) is also an adaptively-secure NIZK proof system. However,
if this new proof system is used in the Naor-Yung construction we can construct an adversary
A (making a CCA2 attack) which breaks the encryption as follows:

A(pk) :

Output (m0,m1)
Get back (c1, c2,Π|0)
Submit (c1, c2,Π|1) to the decryption oracle
Get back mb

The adversary just modifies the last bit of the challenged ciphertext and submits it to the
decryption oracle (note that this is allowed under the definition of CCA2 security). By this
method, the adversary will get back the actual message as the last bit was just a spurious
bit. So, this construction is not secure against adaptive chosen-ciphertext attacks.

If we examine the proof of security for the Naor-Yung construction and try to analyze
where it breaks down in this case, we see that the Pr2[Fake] is no longer negligible. This is
because, if the adversary gets a fake proof (say, (c1, c2,Π|0)), he can construct another fake
proof by changing just the last bit (i.e., (c1, c2,Π|1)).

We mention in passing that one fix this problem by constructing a proof system satisfying
a stronger notion of security: namely, that even when an adversary is given a fake proof,
it should be unable to construct a different fake proof. See [4, 2] for work along this line.
Here, however, we discuss a different method which was historically first.

3 Signature Schemes

For the construction that follows, we will need to notion of a digital signature scheme. Of
course, such schemes are also very useful in their own right, and maybe we will return to
them later in the course.

Definition 3 A signature scheme (over some message spaceM) is a triple of ppt algorithms
(SigGen,Sign,Verify) such that:

1. SigGen is a randomized algorithm which outputs a verification key vk and a secret
key sk (denoted by (vk, sk)← SigGen(1k)).

2. Sign is a (possibly) randomized algorithm which takes a secret key sk and a message
m ∈M and outputs a signature σ (denoted by σ ← Signsk(m)).

7-7

3. Verify is a deterministic algorithm which takes a verification key vk, a message m ∈M,
and a signature σ and outputs 1 or 0 (denoted by Verifyvk(m,σ)). A 1 indicates that
the signature is valid and a 0 indicates that the signature is invalid.

We require that for all k, for all (vk, sk) output by SigGen(1k), and for all m ∈M we have
Verifyvk(m,Signsk(m)) = 1. ♦

The above merely defines the semantics of signing, but does not give any notion of
security. Many such definitions are possible, but we will only require a fairly weak definition
of security for the present application (note that this definition of security is too weak for
signature schemes used to sign, say, documents).

Definition 4 A signature scheme (SigGen,Sign,Verify) is a one-time, strong signature
scheme if the following is negligible for all ppt adversaries A:

Pr

[

(vk, sk)← SigGen(1k);m← A (vk) ;σ ← Signsk(m);
(m′, σ′)← A (vk, σ) : Verifyvk (m′, σ′) = 1 ∧ (m′, σ′) 6= (m,σ)

]

.

♦

What this means is that, given a signature of a message he chooses, an adversary cannot
forge a signature for a different message without knowledge of the secret key. (Also, the
adversary cannot even forge a different signature on the same message.) While we do
not prove it here, it is known that one-time, strong signature schemes exist assuming the
existence of one-way functions.

Theorem 9 If one-way functions exist then one-time, strong signature schemes exist.

4 Dolev-Dwork-Naor Construction

Danny Dolev, Cynthia Dwork, and Moni Naor [1] constructed an encryption scheme secure
against adaptive chosen-ciphertext attacks beginning from any underlying semantically-
secure scheme, a one-time, strong signature scheme, and an adaptively-secure NIZK proof
system. Their construction is discussed in this section.

Let (Gen, E ,D) be a semantically secure encryption scheme. We construct a new en-
cryption scheme (Gen′, E ′,D′) as follows:

7-8

Gen′(1k): r← {0, 1}poly(k)

for i = 1 to k

for b = 0 to 1
(pki,b, ski,b)← Gen(1k) (Generate 2k pairs of keys)

pk =

(

pk1,0 pk2,0 . . . pkk,0

pk1,1 pk2,1 . . . pkk,1

)

, r

sk =

(

sk1,0 sk2,0 . . . skk,0

sk1,1 sk2,1 . . . skk,1

)

E ′pk(m): (vk, sk)← SigGen(1k)
Let vk = v1|v2| · · · |vk be the binary representation of vk

(we assume for simplicity that |vk| = k)
for i = 1 to k

wi ← {0, 1}
∗; ci ← Epki,vi

(m;wi)

Π← P(r, ~C, (m, ~w))
(this is a proof that all ciphertexts correspond to same message)

σ ← Signsk(~C|Π)

output vk, ~C,Π, σ

D′
sk(vk, ~C,Π, σ): if Verifyvk(~C|Π, σ) = 0 (Verify signature)

output ⊥
else

if V(r, ~C,Π) = 0 (Verify proof)
output ⊥

else
output Dsk1,v1

(c1)

Note that the attack we showed on the Naor-Yung scheme fails here since the attack would
require an adversary to forge a signature with respect to vk (which is infeasible). Of course,
we need a formal proof to show that the scheme resists all adaptive chosen-ciphertext
attacks.

Theorem 10 Assuming (Gen, E ,D) is a semantically secure encryption scheme, (P,V) is
an adaptively-secure NIZK proof system, and a one-time, strong signature scheme is used,
then (Gen′, E ′,D′) is secure against adaptive chosen-ciphertext attacks.

Proof The proof uses the same structure as that of the Naor-Yung construction. We have
a ppt adversary A making an adaptive chosen-ciphertext attack on the encryption scheme.
We show that the probability that the adversary will succeed is negligible by constructing a
series of games and showing that they are all computationally indistinguishable. We begin
by defining our original game, which corresponds to the real encryption scheme when the
adversary gets an encryption of m0:

7-9

Game 0 :
{(pki,b, ski,b)}1≤i≤k;b∈{0,1} ← Gen(1k)

r ← {0, 1}poly(k)

pk = {pki,b}1≤i≤k;b∈{0,1}, r; sk = {ski,b}1≤i≤k;b∈{0,1}

(m0,m1)← AD′

sk
(·)(pk)

(vk, sk)← SigGen(1k)
for i = 1 to k

ci ← Epki,vi
(m0)

Π← P(r, ~C, (m0, ~w))

σ ← Signsk(~C|Π)

b← AD′

sk
(·)(vk, ~C,Π, σ)

We begin by stating a technical lemma. Let Forge be the event that A submits a ciphertext
(vk′, ~C ′,Π′, σ′) to the decryption oracle with:

• vk′ = vk

• (~C ′,Π′, σ′) 6= (~C,Π, σ)

• Verifyvk(~C ′|Π′, σ′) = 1

Claim 11 Pr0[Forge] is negligible.

This follows from the 1-time strong security of the signature scheme. Details omitted.
The proof of security for the Dolev-Dwork-Naor scheme will be completed in the follow-

ing lecture.

References

[1] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography, proceedings of the
twenty-third annual ACM Symposium on Theory of Computing (1991).

[2] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption under Gen-
eral Assumptions, Eurocrypt 2003: 241-254 (2003).

[3] M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen-
Ciphertext Attacks, proceedings of the twenty-second annual ACM Symposium on The-
ory of Computing (1990).

[4] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security, FOCS 1999: 543-553 (1999).

7-10

CMSC 858K — Advanced Topics in Cryptography February 19, 2004

Lecture 8

Lecturer: Jonathan Katz Scribe(s):

Alvaro A. Cardenas
Nicholas Sze
Yinian Mao
Kavitha Swaminathan

1 Introduction

Last time we introduced the Naor-Yung construction of a CCA1-secure cryptosystem, and
gave a proof of security. We also gave the construction of a CCA2-secure cryptosystem by
Dolev-Dwork-Naor. Here, we complete the proof that this cryptosystem is indeed CCA2
secure.

2 The Dolev-Dwork-Naor (DDN) Scheme [1]

Given a public-key encryption scheme (Gen′, E ′,D′), an adaptively-secure NIZK proof sys-
tem (P,V), and a (strong, one-time) signature scheme (SigGen,Sign,Vrfy), the DDN encryp-
tion scheme is constructed as follows (in the following, poly(k) represents some unspecified
polynomial which is not necessarily always the same):

• Gen(1k):
for i = 1 to k do (pki,0, ski,0)← Gen′(1k), (pki,1, ski,1)← Gen′(1k)
Select a random r: r ← {0, 1}poly(k)

Output pk∗ =

[

pk1,0 pk2,0 · · · pkk,0

pk1,1 pk2,1 · · · pkk,1

]

, r

and sk∗ =

[

sk1,0 sk2,0 · · · skk,0

sk1,1 sk2,1 · · · skk,1

]

(in fact, we may simplify things and let sk∗ = (sk1,0, sk1,1); see below).

• Epk∗(m):
(vk, sk)← SigGen(1k)
view vk as a sequence of k bits1; i.e., vk = vk1|vk2| · · · |vkk

for i = 1 to k: wi ← {0, 1}
poly(k); ci ← E

′

pki,vki
(m;wi)

π ← P(r,~c, ~w)
σ ← Signsk(~c|π)
Output (vk,~c, π, σ)

• Dsk∗(vk,~c, π, σ):
If Vrfyvk(~c|π, σ) = 0 then output ⊥
If V(r,~c, π) = 0 then output ⊥
Else output D′

sk1,vk1

(c1)

1The scheme can be modified in the obvious way for vk of arbitrary (polynomial) length.

8-1

Theorem 1 The encryption scheme presented above is CCA2 secure if (Gen ′, E ′,D′) is se-
mantically secure, (P,V) is an adaptively-secure NIZK proof system, and (SigGen,Sign,Vrfy)
is a strong, one-time signature scheme.

Proof Consider an arbitrary ppt adversary A with adaptive access to a decryption oracle.
We will use a sequence of games in which the first game will correspond to a real encryption
of m0, the final game will correspond to a real encryption of m1 (here, m0,m1 are the
messages output by A), and in each stage along the way we show that the difference in
the adversary’s probability of outputting “1” is negligible. This then implies that the
difference between the probability that it outputs 1 when it gets an encryption of m0 and
the probability it outputs 1 when it gets an encryption of m1 is also negligible, and that is
exactly the definition of CCA2 security.

Game 0 is the encryption of m0 using the real cryptosystem:

Game 0: Stage 1 {(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, . . . , k and b = 0, 1

r ← {0, 1}poly(k)

(pk∗, sk∗) = (({pki,b} , r) , {ski,b})

(m0,m1) ← ADsk∗(·)(pk∗)

Stage 2 (vk, sk) ← SigGen(1k)

wi ← {0, 1}poly(k), for i = 1, 2, · · · , k (from now on
we let this step be implicit)

ci ← E ′pki,vki
(m0;wi), for i = 1, 2, · · · , k

π ← P(r,~c, ~w)
σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)

Then, we modify Game 0 by simulating r and π to obtain Game 1. Simulator Sim1

generates r and simulator Sim2 outputs π without any witness.

Game 1: Stage 1 {(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, · · · , k and b = 0, 1

r ← Sim1(1
k)

(pk∗, sk∗) = (({pki,b} , r) , {ski,b})

(m0,m1) ← ADsk∗(·)(pk∗)

Stage 2 (vk, sk) ← SigGen(1k)

ci ← E ′pki,vki
(m0;wi), for i = 1, 2, · · · , k

π ← Sim2(~c)

σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)

Claim 2 Let Pri[·] denote the probability of a given event in game i. Then for any ppt A
the following is negligible: |Pr0[b

∗ = 1]− Pr1[b
∗ = 1].|

8-2

Sketch of Proof (Informal) The validity of this claim is intuitively clear as if the prob-
abilities are substantially different then A can be used as a distinguisher between a real
NIZK proof and a simulated proof. distinguish a simulated proof from a real proof. We
provide more details now.

Given a ppt adversary A, construct the following ppt adversary A′ (adversary A′ will
attempt to distinguish between real/simulated proofs):

A′(r): // r is either a truly random string or a string output by Sim1

{(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, · · · , k and b = 0, 1
pk∗ = ({pki,b} , r)
(m0,m1)← A(pk∗)
(vk, sk)← SigGen(1k)
∀i ci ← E

′
pki,,vki

(m0;wi)

Output (~c, ~w)
get π //π is either a real proof or a simulated proof
σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)
Output b∗

Note that A′ has no problems simulating the decryption oracle for A, since it has all
necessary secret keys. If (r, π) are a real string/proof, then A is interacting in Game 0 and
so the probability that A′ outputs 1 is the probability that A outputs 1 in Game 0. On the
other hand, if (r, π) are a simulated string/proof, then A is interacting in Game 1 and so
the probability that A′ outputs 1 is the probability that A outputs 1 in Game 1. Since the
NIZK proof system is adaptively-secure, we must have |Pr0[b

∗ = 1]− Pr1[b
∗ = 1].|.

We construct Game 1′ as Game 1 except that if A ever makes valid decryption oracle
query using vk (where vk is the verification key used to construct the challenge ciphertext),
then we simply return ⊥ in response to this query. We claim that |Pr1′ [b

∗ = 1]−Pr1[b
∗ = 1]|

is negligible. Note that the only difference between the games occurs if A is able to forge
a new, valid signature with respect to vk (since ciphertexts submitted to the decryption
oracle must be different from the challenge ciphertext, and since ciphertexts are only valid
if the signature verifies correctly); furthermore, the security of the signature scheme ensures
that this event occurs with only negligible probability. Details omitted.

We construct a new game, Game 1′′, which is the same as Game 1′ except that instead
of using sk1,vk′

1
to decrypt a ciphertext (vk′, ~c′, π′, σ′) (i.e., to answer decryption oracle

queries for this ciphertext), we look for the first bit position i where vk and vk ′ differ2 (i.e.,
vki 6= vk′

i) and use key ski,vk′

i
to decrypt. I.e., the decryption oracle now works as follows:

D′′

sk∗(vk′, ~c′, π′, σ′) =

⊥ if vk′ = vk;

⊥ if Vrfyvk′(~c′|π′, σ′) = 0 or V(r, ~c′, π′) = 0;
D′

ski,vk′
i

(c′i) otherwise (where i is as discussed above)
.

Claim 3 For any ppt A the following is negligible: |Pr1′′ [b
∗ = 1]− Pr1′ [b

∗ = 1]|.

2Here, vk is again the verification key used for the challenge ciphertext; note that there must be a bit
position where they differ since if vk = vk

′ we abort anyway.

8-3

Sketch of Proof (Informal) In a given query to the decryption oracle, if all ciphertexts
decrypt to the same thing then it doesn’t really matter what secret key we use. The
only difference between Game 1′′ and Game 1′ occurs if the adversary queries a vector of
ciphertexts ~c′ where different ciphertexts decrypt to different messages. So the only possible
way to distinguish between Game 1 and Game 1′ is if a decryption query is ever made for
which there exists two different indices i and j where the decryption of c′i is not equal to

the decryption of c′j and yet the proof is valid (i.e., V (r, ~c′, π′) = 1). We argue that this
event occurs with negligible probability.

Let Fake be the event that A requests a decryption query (vk ′, ~c′, π′, σ′) s.t. π′ is a
valid proof and ∃i, j s.t. D′

ski,vk′
i

(ci) 6= D
′
skj,vk′

j

(cj). Note that Pr1′′ [Fake]] = Pr1′ [Fake]

(since there is no difference between the games until Fake occurs). Furthermore, we claim
that |Pr1′ [Fake]−Pr1[Fake]| is negligible. This is so because (as before) the only difference
between these games occurs if the adversary forges a signature using vk, which happens
with only negligible probability. We also claim that |Pr1[Fake] − Pr0[Fake]| is negligible,
since otherwise we can construct an adversary A′ distinguishing real from simulated proofs,
similar to the proof of Claim 1 (it is essential here that A′ knows all secret keys, so can
check when event Fake occurs). Finally, note that Pr0[Fake] is negligible by the (adaptive)
soundness of the NIZK proof system. We conclude that Pr1′′ [Fake] is negligible, and this is
sufficient to complete the proof of the claim.

We construct Game 2 which is the same as Game 1′′ except that we form the challenge
ciphertext by encrypting (k copies of) m1 instead of m0. I.e., for all i: we compute ci ←
E ′pki,vki

(m1)

Claim 4 For any ppt A the following is negligible: |Pr2[b
∗ = 1]− Pr1′′ [b

∗ = 1]|.

Sketch of Proof (Informal) If A can distinguish between these two games we construct an
adversary A′ attacking the semantic security of the underlying encryption scheme. Actually,
instead of attacking a single instance of the encryption scheme it will attack k instances of
the encryption scheme; i.e., it gets k independently-generated public keys, outputs m0,m1,
gets back either an encryption of m0 (with respect to all k keys) or an encryption of m1, and
then has to guess which is the case. Note, however, that by a standard hybrid argument the
semantic security of a single instance implies the semantic security of poly-many instances.

We construct our A′ as follows:

A′(pk1, · · · , pkk) :

(vk, sk)← SigGen(1k)
{(pk′

i, sk
′

i)} ← Gen′(1k), for i = 1, 2, · · · , k
r ← Sim1(1

k)

pk∗ = ({pki,b} , r), where pki,b =

{

pki if b = vki

pk′

i otherwise

(m0,m1)← AD
∗(·)(pk∗)

Output (m0,m1), get back ~c
π ← Sim2(~c)
σ ← Signsk(~c|π)

Output whateverAD
∗(·)(vk,~c, π, σ) outputs

8-4

It is crucial to note here that A′ can simulate the decryption oracle D∗ — in particular,
for any ciphertext (vk′, ~c′, π′, σ′) submitted by A, if vk′ = vk then A′ just returns ⊥ (as
in the previous game), whereas if vk ′ 6= vk then there is a bit i where they differ (i.e.,
vk′

i 6= vki) and A′ can use the secret key ski,vk′

i
= sk′

i (which is knows!) to decrypt.
This is by construction: A′ knows exactly half the secret keys (i.e., those in positions not
overlapping with vk) and can use those to decrypt.

Notice that if ~c is an encryption of m1 then A is essentially interacting in Game 2,
whereas if it is an encryption of m0 then A is in Game 1′′. So, if A can distinguish between
Game 1” and Game 2 then A′ can distinguish the encryptions and break the semantic
security of the underlying encryption scheme.

Let Game 3 correspond to an encryption of m1 in the real encryption scheme. We jump
ahead and claim the following:

Claim 5 For any ppt A, the following is negligible: |Pr3[b
∗ = 1]− Pr2[b

∗ = 1]|.

Sketch of Proof (Informal) Technically, the proof would proceed by a sequence of games
exactly analogous to games 1, 1′, and 1′′ that we introduced previously. In particular, we
would first revert back to decrypting using either sk1,0 or sk1,1; would then revert back to
decrypting even if vk′ = vk; and, finally, would go back to using a real random string/proof
rather than simulated ones. Because these games (and the proofs that they all do not affect
the probability that b∗ = 1 by more than a negligible amount) are essentially the same as
before, we do not repeat the arguments here.

The above sequence of claims implies (by multiple applications of the triangle inequality)
that |Pr0[b

∗ = 1] − Pr3[b
∗ = 1]| is negligible; this is exactly equivalent to saying that the

scheme is secure against adaptive chosen-ciphertext attacks.

3 Summary

We give a definition of a one-way function.

Definition 1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if the following hold:

1. f(x) is computable in time polynomial in |x|.

2. For all ppt algorithms A, the following is negligible (in k):

Pr[x← {0, 1}k ; y = f(x);x′ ← A(y) : f(x′) = y].

♦ It is not hard to show that if a one-way function exists, then P 6= NP . The converse

(i.e., whether P 6= NP implies the existence one-way functions), is not known to hold.
Since the existence of semantically-secure public-key encryption schemes implies the

existence of one-way functions3, which furthermore implies the existence of one-time strong
signature schemes, we may restate the result of the previous section as follows:

3Prove it as an exercise!

8-5

Theorem 6 If there exists a semantically-secure public-key encryption scheme and an
adaptively-secure NIZK proof system, then there exists a CCA2-secure encryption scheme.

Later in the course, we will show:

Theorem 7 If there exist trapdoor permutations, then there exists an adaptively-secure
NIZK proof system.

We have shown in a previous lecture that the existence of trapdoor permutations implies the
existence of semantically-secure public-key encryption. The gives the following corollary:

Corollary 8 If there exist trapdoor permutations, then there exists a CCA2-secure encryp-
tion scheme.

The following important question is still open:

Does semantically-secure public-key encryption imply CCA2-secure public-key
encryption?

In particular, can we construct adaptively-secure NIZK proof systems based on semantically-
secure public-key encryption? Note that these questions are especially interesting since we
do have examples of public-key encryption schemes which are not based (or, at least, so
not seem to be based) on trapdoor permutations; El Gamal encryption is probably the
best-known example.

References

[1] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd ACM Sympo-
sium on the Theory of Computing, pages 543-552, 1991.

[2] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In 22nd ACM Symposium on the Theory of Computing, pages 427-
437, 1990

8-6

CMSC 858K — Advanced Topics in Cryptography February 24, 2004

Lecture 9

Lecturer: Jonathan Katz Scribe(s):

Julie Staub
Avi Dalal
Abheek Anand
Gelareh Taban

1 Introduction

In previous lectures, we constructed public-key encryption schemes which were provably
secure against non-adaptive chosen-ciphertext (CCA-1) attacks, and also adaptive chosen-
ciphertext (CCA-2) attacks. However, both constructions used generic non-interactive zero-
knowledge proof systems which — although poly-time — are not very efficient (as we will
see later in the course). Therefore, the constructions are not very practical.

In 1998, Cramer and Shoup proposed an encryption scheme [1] which was provably
secure against adaptive chosen-ciphertext attacks and was also practical. The proof of
security relies on the hardness of the Decisional Diffie-Hellman (DDH) problem in some
underlying group.

In this lecture, we will first review the Decisional Diffie-Hellman assumption and the
El-Gamal cryptosystem. Then we will modify the El-Gamal encryption scheme to construct
a scheme secure against non-adaptive chosen-ciphertext attacks. This will be a step toward
the full Cramer-Shoup cryptosystem, which we will cover in later lectures.

2 Background

The Cramer-Shoup cryptosystem relies on the DDH assumption in some finite group. In
Lecture 4, we defined the Discrete Logarithm (DL) problem and DDH problem; we review
them here. Let G be a finite cyclic group of prime order q, and let g ∈ G be a generator.
Given h ∈ G, the discrete logarithm problem requires us to compute x ∈ � q such that
gx = h. We denote this (unique) x by logg h. In particular groups G and for q large, it is
assumed hard to compute x (this was formalized in Lecture 4).

A stronger assumption is the Decisional Diffie-Hellman (DDH) assumption. Here, given
G, a generator g of G, and three elements a, b, c ∈ G, we are asked (informally) to decide
whether there exist x, y such that a = gx, b = gy and c = gxy. More formally, the DDH as-
sumption states that the following two distributions are computationally indistinguishable:

• {G, g, gx, gy , gxy}

• {G, g, gx, gy , gz}

where g is a generator of G and x, y, z are chosen at random from � q . (Again, see Lecture
4 for more formal definitions.)

9-1

Clearly, the DDH assumption implies the DL assumption. In fact, it appears to be
considerably stronger. In particular, there are groups where DDH is false, but DL is still
believed to hold. For example1, let G = � ∗

p for a prime p. On the one hand, the DL

problem is believed to be hard in this group. Yet given ga, gb (for generator g) one can
easily deduce the Legendre symbol of gab (which we denote by L(gab)). This observation
gives an immediate method for distinguishing {G, g, gx, gy , gxy} and {G, g, gx, gy, gz} with
non-negligible probability; namely, guess “DDH tuple” iff L(gz) = L(gxy).

A group in which DDH is assumed to hold is the following: Let p = 2q+1 where p, q are
both prime. Let G be the subgroup of quadratic residues in � ∗

p. Then G is a cyclic group of
prime order q in which the DDH assumption is believed to hold.

The El-Gamal cryptosystem. In Lecture 4, we introduced the El-Gamal encryption
scheme and proved that it was semantically secure under the DDH assumption; it may
be useful to review that proof before continuing. We recall the scheme now (here, g is a
generator of a group G):

KeyGen(1k): x← � q

y = gx

PK = 〈g, y〉
SK = 〈x〉

EPK(m): r ← {0, 1}k

output 〈gr, yr ·m〉

DSK(u, v): output v
ux

Correctness: Assuming an honest execution of the protocol, we have

v

ux
=

yr ·m

(gr)x
=

(gx)r ·m

(gr)x
= m.

3 Modifying El-Gamal

To build up to the Cramer-Shoup scheme, we first modify the El-Gamal encryption scheme
and prove that the modified scheme is semantically secure under the DDH assumption.
Although we achieve the same result, we introduce the modified scheme because the proof
technique used to prove the modified scheme secure is different than that used to prove
security of the El Gamal scheme in Lecture 4. The same sort of techniques will later be
used to analyze the Cramer-Shoup scheme.

Consider the following scheme, where g1, g2 are two randomly-chosen generators in G:

KeyGen(1k): x, y ← � q

h = gx
1gy

2

PK = 〈g1, g2, h〉
SK = 〈x, y〉

1Note that in this example, the order of G is not prime. However, all groups we use in our constructions

will have prime order.

9-2

EPK(m): r ← � q

output 〈gr
1, gr

2, hr ·m〉

DSK(u, v, e): output e
uxvy

Correctness: Assuming an honest execution of the protocol, we have

e

uxvy
=

hrm

(gr
1)

x(gr
2)

y
=

hrm

(gx
1 gy

2)r
= m.

Theorem 1 The above encryption scheme is semantically secure, assuming the DDH as-
sumption in G.

Proof We prove security of this scheme by a reduction to the DDH problem. Suppose a
ppt algorithm A can break the semantic security of the modified scheme. We then construct
a ppt adversary Â that can break the DDH problem by distinguishing a DDH tuple from
a random tuple. Thus by contradiction, the security of the new scheme is proved.

The input to algorithm Â is (g1, g2, g3, g4), which is either a DDH tuple or a random
tuple. The algorithm Â runs the following experiment.

Â(g1, g2, g3, g4)

x, y ← � q

h = gx
1 gy

2

PK = 〈g1, g2, h〉
(m0,m1)← A(PK)
b← {0, 1}
C = 〈g3, g4, gx

3 gy
4 ·mb〉

b′ ← A(PK,C)
if b = b′, then guess “DDH tuple”
else guess “random tuple”

Claim 2 If adversary Â gets a DDH tuple, then A’s view of the game is the same as in an
execution of the real encryption scheme.

Assume Â gets a DH tuple. Then there exist α, r ∈ � q, such that:

〈g1, g2 = gα
1 , g3 = gr

1, g4 = gαr
1 = gr

2〉.

Therefore, the constructed public key and ciphertext have the following forms:

PK = 〈g1, g2, h = gx
1 gy

2〉 and C = 〈gr
1, gr

2, (gr
1)

x (gr
2)

y ·mb〉 = 〈g
r
1, gr

2, hr ·mb〉 .

Thus, the distribution of the public key and the ciphertext correspond exactly to A’s view
in the real world. (It should be noted that this occurs even though Â does not know nor
use the value of r.)

Note that the claim implies:

Pr[Â outputs “DDH tuple” | DDH tuple] = Pr[b′ = b | A attacks real encryption scheme].

9-3

Claim 3 If adversary Â gets a random tuple, then (with all but negligible probability) even
an all-powerful A has no information about the bit b chosen by Â. In other words, b is
information-theoretically hidden from A with all but negligible probability.

An immediate corollary is that the probability that A correctly guesses b must be negligibly
close to 1/2 in this case (note that this holds even if A is all powerful). We continue with
the proof of the claim.

Assume Â gets a random tuple. Then there exist α, r, β chosen uniformly from � q such
that (g1, g2, g3, g4) have the following form:

〈g1, g2 = gα
1 , g3 = gr

1, g4 = gβ
1 〉.

Note that with all but negligible probability, β 6= αr (mod q) and α 6= 0. This is because,
for example, β = αr with probability 1/q, and q is exponentially large. From now on, we
simply assume that these hold. Re-writing, this means that there exist r, r ′ ∈ � q with r 6= r′

such that g3 = gr
1 and g4 = gr′

2 . We now look at A’s information about x and y. Given the
public key PK = 〈g1, g2, h〉, note that there are exactly q possible pairs (x, y) that could
have been chosen by A. This is because h satisfies h = gx

1 gy
2 , and hence x and y satisfy

logg1
h = x + (logg1

g2) · y = x + αy . (1)

Now, for every x ∈ � q there is a unique y ∈ � q satisfying the above equation (and similarly
for y). (We use the fact here that α 6= 0.) In particular, then, there are exactly q solutions
to the above equation and furthermore each of these possibilities are equally likely from the
point of view of A.

Now, consider the term gx
3 gy

4 . We will be interested in the probability that gx
3 gy

4 = µ,
where µ is an arbitrary group element. In order for this to occur, we must have logg1

µ =
logg1

(gx
3 gy

4); i.e.:

logg1
µ

= x · logg1
g3 + y · logg1

g4

= r · x + r′α · y . (2)

Let z1 = logg1
h and z2 = logg1

µ. Then Equations (1) and (2) form a system of linear
equations in x and y (over � q) given by B~x = ~z, where

B =

(

1 α
r r′α

)

, ~x = [x y]T , ~z = [z1 z2]
T .

Assuming r′ 6= r and α 6= 0 (see above), the matrix B above has rank 2 and therefore
the above system of equations always has a (unique) solution in x, y. But since µ was an
arbitrary group element, this means that each possible value µ is possible and moreover,
each value of µ is equally likely. In other words, what we are saying is the following: given
g1, g2, g3, g4, and h = gx

1gy
2 for x and y chosen uniformly at random from � q (and assuming

logg1
g3 6= logg2

g4), even an all-powerful algorithm cannot predict the value of gx
3gy

4 with
probability better than 1/q. (again, this is because all values of gx

3gy
4 are equally likely).

9-4

Since gx
3 gy

4 is distributed uniformly in the group (from the point of view of A), it essen-
tially acts like a “one-time pad” and thus A has no information (in an information-theoretic
sense) about which message was encrypted, and hence no information about the value of b.
This implies the claim.

The above claim implies:

Pr[Â outputs “DDH tuple” | random tuple] = 1/2± negl(k).

Thus, the advantage of Â is negligibly close to:
∣

∣Pr[b = b′ | A attacks real scheme]− 1/2
∣

∣ .

Since we know that the advantage of Â must be negligible, this implies that the probability
that A correctly guess the value of b must be negligibly close to 1/2. But this exactly means
that the encryption scheme is semantically secure, as desired.

4 The Cramer-Shoup-“Lite” Cryptosystem

We next define the Cramer-Shoup “lite” encryption scheme. This is a step toward the full
Cramer-Shoup scheme, but is only secure against non-adaptive chosen-ciphertext attacks.
The scheme is defined as follows (g1, g2 are randomly-chosen generators of group G):

KeyGen(1k): x, y, a, b← � q

h = gx
1gy

2

c = ga
1gb

2

PK = 〈g1, g2, h, c〉
SK = 〈x, y, a, b〉

EPK(m): r ← � q

output 〈gr
1, gr

2, hr ·m, cr〉

DSK(u, v, e, w): // Verify w has the correct form
if (w = uavb), then output e

uxvy

else output ⊥

Correctness: If the ciphertext is computed honestly, the validity check succeeds since

w = cr =
(

ga
1gb

2

)r

= (gr
1)

a (gr
2)

b = uavb

and the message is then recovered as

e

uxvy
=

hrm

(gr
1)

x(gr
2)

y
=

hrm

(gx
1 gy

2)r
= m.

We now prove the security of the scheme.

Theorem 4 Under the DDH Assumption, the above encryption scheme is secure against
non-adaptive chosen-ciphertext attack.

9-5

Proof The proof is very similar to the proof of the previous theorem. As there, assume
we are given a ppt algorithm A attacking the above encryption scheme. We construct
algorithm Â trying to distinguish DDH tuples from random tuples. As in the previous
proof, we will argue that if the tuple given to Â is a DDH tuple, then the view of A is
identical to its view when attaching the above encryption scheme. On the other hand, if
the tuple given to Â is a random tuple, then A will have no information about the message
that is encrypted in an information-theoretic sense. The difference here is that we will be
considering the more difficult case of CCA-1 security, and we must show that the queries
made to the decryption oracle by A will not reveal anything. With this in mind, let us
begin a formal proof.

Given some adversary A attacking the above encryption scheme via a non-adaptive
chosen-ciphertext attack, we construct an adversary Â as follows:

Â(g1, g2, g3, g4)

x, y, a, b← � q

h = gx
1 gy

2 ; c = ga
1gb

2

PK = 〈g1, g2, h, c〉
SK = 〈x, y, a, b〉

(m0,m1)← ADSK(·)(PK)
b← {0, 1}
C = 〈g3, g4, gx

3 gy
4 ·mb, ga

3gb
4〉

b′ ← A(PK,C)
if b = b′, then guess “DDH tuple”
else guess “random tuple”

Claim 5 If Â gets a DDH tuple, then A’s view of the game is the same as in an execution
of the real Cramer-Shoup-lite encryption scheme.

A corollary of this claim is that

Pr[Â outputs “DDH tuple” | DDH tuple] = Pr[b′ = b | A attacks real scheme].

We now prove the claim.
Certainly the public key created by Â is exactly identical to the public key seen by A in

a real execution of the encryption scheme. In fact, the secret key held by Â is also identical
to that used in a real execution of the encryption scheme, and thus the decryption queries
of A are answered exactly as they would be in a real execution of the encryption scheme.
The only thing left to examine is the ciphertext. But if the input to A is a DDH tuple, then
we can write g3 = gr

1 and g4 = gr
2 where r is uniformly distributed in � q. But then simple

algebra shows that the ciphertext is distributed identically to the challenge ciphertext in a
real execution of the encryption scheme (details left to the reader).

Claim 6 If Â gets a random tuple, then (with all but negligible probability) A has no infor-
mation about the bit b chosen by Â. We remark that this holds in an information-theoretic
sense, for all-powerful A, as long as A can only make polynomially-many queries to the
decryption oracle.

9-6

Before proving the claim, we show how this claim completes the proof of the theorem.
The claim implies that the probability that A correctly guesses b is negligibly close to 1/2
and therefore Pr[Â outputs “DDH tuple” | random tuple] is negligibly close to 1/2 as well.
Thus, the advantage of Â is negligibly close to:

∣

∣Pr[b = b′ | A attacks real scheme]− 1/2
∣

∣ .

Since the DDH assumption implies that the advantage of Â is negligible, this implies that
the probability that A correctly guesses the value of b when attacking the real scheme is
negligibly close to 1/2. But this is exactly the definition of CCA-1 security.

We return to the proof of the claim. The proof is similar to the analogous claim proven
previously, in that we argue that A’s information about x and y will not be enough to
determine which message was encrypted. But we have to be a little more careful here because
A can now potentially learn additional information about x and y from the decryption oracle
queries it makes.

Let (g1, g2, g3, g4) be a random tuple. As before, we may write these as:

〈g1, g2 = gα
2 , g3 = gr

1, g4 = gr′

2 〉,

where with all but negligible probability α 6= 0 and r 6= r ′ (and we assume this from now
on). From PK, adversary A learns that h = gx

1 gy
2 and this constrains x, y according to:

logg1
h = x + (logg1

g2) · y = x + αy (3)

exactly as before.
We now consider what additional information A learns about x, y from its queries to

the decryption oracle. When A makes a decryption oracle query (µ, ν, e, w) there are two
cases: either there exists an r′′ such that µ = gr′′

1 and ν = gr′′

2 (and hence this ciphertext is
“legal”), or not. We call queries of the latter form “illegal”. We first show that A only learns
additional information about x, y if it makes an illegal query which is not rejected. But
we next show that (with all but negligible probability) all A’s illegal queries are rejected.
Putting this together will imply that A does not learn additional information about x, y
with all but negligible probability.

Claim 7 A gets additional information about x, y only if it submits a decryption query
(µ, ν, e, w) such that:

1. logg1
µ 6= logg2

ν (i.e., an illegal query), and

2. DSK(·) does not return ⊥.

To see this, first suppose that DSK(·) returns ⊥. The only time this happens is when the
decryption routine rejects because w is not of the correct form. But this check only involves
a and b, and hence cannot reveal any information about x, y.

Next suppose that A submits a query for which logg1
µ = logg2

ν = r′′ for some arbitrary
r′′. In this case, based on the output m of the decryption oracle, A learns that m = e

µxνy .

9-7

Taking logarithms of both sides means that A learns the following linear constraint on x
and y:

logg1
m

= logg1
e− (logg1

µ)x− (α logg2
ν)y

= logg1
e− r′′x− αr′′y

(note that e and m are known, so x and y are the only variables here). But this equation is
linearly dependent on Equation (3). Thus, this does not introduce any additional constraint
on x, y and hence the adversary has not learned any additional information about x, y.

Claim 8 The probability that A submits a decryption query (µ, ν, e, w) for which logg1
µ 6=

logg2
ν but DSK(µ, ν, e, w) 6=⊥ is negligible.

Let logg1
µ = r1 and logg2

ν = r2. In order for the decryption oracle to not reject, the

adversary must “predict” the value of µaνb (so that it can set w equal to this value). We
show that it cannot do so with better than negligible probability.

Consider the information the adversary knows about a, b. From the public key, A learns
that c = ga

1gb
2 and this constrains a, b according to:

logg1
c = a + (logg1

g2) · b = a + αb . (4)

The first time A makes an illegal decryption oracle query with logg1
µ 6= logg2

ν, the above
equation represents all the information the adversary knows about a, b. Now, let w ′ be an
arbitrary group element. The value of µaνb is equal to w′ exactly if:

logg1
w′

= a logg1
µ + b logg1

ν

= r1 · a + αr2 · b . (5)

But Equations (4) and (5) (viewed as equations in unknowns a, b over � q) are linearly
independent and hence have a solution in terms of a, b. Since this is true for arbitrary w ′,
this means that any value of w′ is possible (in fact, they are all equally likely) and hence A
can only predict the correct value of w with probability 1/q. (Note that this argument is
substantially similar to the proof of Claim 3, above.)

Now, the above was true for the first illegal decryption query of A. However, each illegal
decryption query of A does reveal some additional information about a, b. In particular,
when an illegal query (µ, ν, e, w) is rejected the adversary learns that w 6= µaνb. At best,
however, this eliminates one possibility for a, b. From Equation (4 alone, there are q possi-
bilities for (a, b), and each rejected decryption query of A eliminates at most one of these
solutions. Thus, at the time of the (p + 1)th decryption query of A, assuming the first p
of A’s illegal decryption queries were rejected, there are (at least) q − p possible solutions
for (a, b). The argument of the previous paragraph now has to be modified to take this
into account. But what we see is that eliminating one possibility for (a, b) has the effect of
eliminating one possible value of w. So now the probability that A can correctly guess w is
1/(q − p).

9-8

Assume A makes a total of p decryption queries. Straightforward probability calculations
show that the probability that any of A’s illegal queries are not rejected is at most p/(q−p)
(in each of p illegal decryption queries, A has at best probability 1/(q− p) of the query not
being rejected). But since p is polynomial and q is exponential, this is a negligible quantity.

Putting the above two claims together shows that, with all but negligible probability,
A never learns any additional information about x, y beyond that implied by Equation (3).
Assuming this is the case, an argument exactly like that given in the proof of Claim 3 shows
that gx

1gy
2 is uniformly distributed in the group (from the point of view of A) and hence A

has no information about the value of b. This completes the proof of Claim 6, and thus the
proof of the theorem.

References

[1] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In Adv. in Cryptology — CRYPTO 1998.

9-9

CMSC 858K — Advanced Topics in Cryptography February 26, 2004

Lecture 10

Lecturer: Jonathan Katz Scribe(s):
Jeffrey Blank
Chiu Yuen Koo
Nikolai Yakovenko

1 Summary

We had previously begun to analyze the Cramer-Shoup encryption scheme by looking at a
simplified version of the scheme that is secure only against non-adaptive chosen-ciphertext
attacks. These notes revisit this discussion, and then go on to show the full Cramer-Shoup
scheme that is secure against adaptive chosen-ciphertext attacks [1].

2 Simplified Cramer-Shoup

Recall the simplified Cramer-Shoup scheme:

• PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2)

• SK = (x, y, a, b)

• EPK(m): choose random r ∈ � q; set C = (gr
1, gr

2, hr ·m, cr)

• DSK(u, v, w, e)

- If e 6= uavb then output ⊥ (i.e., invalid)

- else output w
uxvy

A proof of the following was given in the last lecture, but we briefly review it here.

Theorem 1 Under the DDH assumption, the simplified Cramer-Shoup Scheme is secure
against non-adaptive chosen-ciphertext attacks.

Proof Based on a ppt adversary A attacking the simplified Cramer-Shoup scheme, we
construct an adversary A′ as follows:

A′(g1, g2, g3, g4)

x, y, a, b← � q

PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2)
(m0,m1)← A(PK)
b← {0, 1}
b′ ← A(PK, g3, g4, gx

3gy
4 ·mb, ga

3gb
4)

output 1 iff b′ = b

Let Rand be the event that (g1, g2, g3, g4) are chosen from the distribution of random
tuples, and let DH be the event that they were chosen from the distribution of Diffie-Hellman
tuples. We have the following claims:

10-1

Claim 2
∣

∣ Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ = negl(k).

Proof This follows from the DDH assumption and the fact that A′ is a ppt algorithm.

Claim 3 Pr[A′ = 1|DH] = PrA[Succ].

Proof By inspection, if (g1, g2, g3, g4) is a DH tuple, then g3 = gr
1 and g4 = gr

2 for some
(randomly distributed) r ∈ � q. The claim follows.

Claim 4 |Pr[A′ = 1|Rand]− 1

2
| = negl(k).

Proof Since Pr[A′ = 1] = Pr[A = b], we will show that

|Pr[A = b | Rand]−
1

2
| = negl(k). (1)

In fact, we will show that this is true even if A has unlimited computational power (but
can only access the decryption oracle polynomially-many times). If A is all-powerful, we
may assume it knows logg1

g2; call this γ. From the public key, A learns that h = gx
1 gy

2 , or,
equivalently (taking discrete logarithms of both sides):

logg1
h = x + y · γ. (2)

This collapses the space of (x, y) into q possible pairs, one for each value of x ∈ � q (and sim-
ilarly for y). The following sub-claims show that A cannot learn any additional information
about x and y using its decryption queries:

Sub-Claim Except with negligible probability, for all decryption queries (u, v, w, e) made by
A such that logg1

u 6= logg2
v, decryption returns ⊥.

Proof of Sub-Claim Before the first decryption query, the only thing A knows about a and
b from the public key is that c = ga

1gb
2. Taking discrete logarithms of both sides gives:

logg1
c = a + b · γ. (3)

Consider some ciphertext (u, v, w, e) submitted to the decryption oracle, where u = gr
1 and

v = gr′

2 with r 6= r′. For every z ∈ G, there is exactly one pair (a, b) ∈ � q × � q satisfying
Equation (3) and

z = uavb ⇔ logg1
z = ar + br′ · γ (4)

(this is because Equation 3 and Equation 4 are linearly independent in the unknowns a and
b). Therefore, from the point of view of A the value of uavb is uniformly distributed in G.
Furthermore, the ciphertext (u, v, w, e) is rejected unless e = uavb. Thus, the ciphertext
is rejected except with (negligible) probability 1/q (i.e., unless A happens to choose e
correctly).

Assuming the first decryption query of this form (i.e., with logg1
u 6= logg2

v) is rejected,

all A learns is that e 6= uavb. This eliminates one of the q possibilities for (a, b), but there
are still q − 1 possibilities remaining. Thus, the same argument as above shows that for

10-2

the second decryption query of this form, the query will be rejected except with probability
(at most) 1/(q − 1). Continuing in this way, the nth decryption query of this form will be
rejected except with probability (at most) 1/(q − n + 1). Thus, the probability that one of
these queries is not rejected is at most n/(q − n + 1). Since q is exponential in k while n
(the number of decryption queries) is polynomial in k, this proves the claim.

Sub-Claim Assuming all “bad” decryption queries of the form described above are rejected,
A learns no additional information about x and y.

Proof of Sub-Claim Note that when a “bad” decryption query is rejected, A learns nothing
about x and y (since the ciphertext is rejected based on a and b alone). So, we need only
look at the “good” decryption queries (u, v, w, e); i.e., those for which logg1

u = logg2
v = r

(for some r). From the response m to such a query, A learns that w/m = (gr
1)

x(gr
2)

y, or:

logg1
(w/m) = xr + yr · γ. (5)

However, the above equation and Equation (2) are linearly dependent. Thus, no extra
information about (x, y) is revealed.

The above claims show that, with all but negligible probability, when A gets the chal-
lenge ciphertext (g3, g4, gx

3 gy
4 · mb, ga

3gb
4), there are q equally-likely possibilities for (x, y).

Thus, with all but negligible probability gx
3 gy

4 ·mb is uniformly distributed over G and inde-
pendent of b and hence Pr[A = b] = 1

2
. But this is equivalent to Equation (1), completing

the proof for Claim 4 and Theorem 1.

It is worth noting that the proof above fails to extend for the case of adaptive chosen-
ciphertext attacks. The reason is as follows: in trying to extend the proof of Claim 4, we see
now that the challenge ciphertext (g3, g4, gx

3gy
4 ·mb, ga

3gb
4) gives an additional, independent

linear constraint on the pair (a, b); namely:

logg1
e = a logg1

g3 + logg1
g4. (6)

From Equations 3 and 6, A could (at least in theory) compute the values of a and b. Thus,
the first sub-claim — though still true for the decryption queries made by A before seeing
the challenge ciphertext — no longer holds for decryption queries made by A after seeing
the challenge ciphertext (indeed, here we see exactly an example of the extra power given
by an adaptive chosen-ciphertext attack). In particular, A can potentially make a query
of the form (gr

1, g
r′

2 , w, (gr
1)

a(gr′

2)b) (with r 6= r′), receive in return the answer m, and thus
learn that:

logg1
(w/m) = xr + yr′ · γ. (7)

Since Equations 2 and 7 are linearly independent, A can compute the values of x and y and
decrypt the challenge ciphertext.

The above just shows where the proof breaks down, but does not show an explicit
(poly-time) attack. However, such an attack on the simplified Cramer-Shoup scheme is
easily derived, and is left as an exercise.

10-3

3 The Cramer-Shoup Cryptosystem

The discussion at the end of the last section illustrates that for the proof to extend, we
need to ensure that the adversary still cannot submit “bad” ciphertexts which decrypt
“properly”, even after seeing the challenge ciphertext. We will achieve this by adding two
more variables so that the number of unknowns will remain greater than the number of
linear equations in these unknowns. The details follows.

Before fully describing the scheme, we note that the scheme will use a collision-resistant
hash function H hashing arbitrary-length strings to � q. We do not give a formal definition
here, but content ourselves with the following, informal definition: a function is collision-
resistant if an adversary cannot find two distinct inputs hashing to the same output in any
“reasonable” amount of time. (In fact, a weaker assumption suffices to prove security for
the Cramer-Shoup cryptosystem, but we do not explore this further here.)

The Cramer-Shoup scheme is as follows:

• PK = (g1, g2, h = gx
1 gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2 , H) where H is a collision-resistant
hash function

• SK = (x, y, a, b, a′, b′)

• EPK(m): Choose random r ∈ � q, and set C = (gr
1, gr

2, hr · m, (cdα)r), where α =
H(gr

1, g
r
2, h

r ·m).

• DSK(u, v, w, e)

- if ua+αa′

vb+αb′

6= e (where α = H(u, v, w)) then output ⊥ (i.e., invalid)

- alse output w
uxvy

For an honestly-constructed ciphertext, we have:

ua+αa′

vb+αb′

= uavb(ua′

vb′

)α

= (ga
1gb

2)
r(ga′

1 gb′

2)rα

= crdrα = (cdα)r

and so the validity check always succeeds. It can then be verified that decryption recovers
the encrypted message.

Theorem 5 Under the DDH assumption, the Cramer-Shoup scheme is secure against adap-
tive chosen-ciphertext attacks.

Proof We proceed as we did in the previous proof, using the same notation as there.
Given a ppt adversaryA attacking the Cramer-Shoup Scheme that succeeds with PrA[Succ],
we construct an adversary A′ as follows:

A′(g1, g2, g3, g4)

x, y, a, b, a′, b′ ← � q

PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2 ,H)
(m0,m1)← A(PK)
b← {0, 1}

b′ ← A(PK, g3, g4, gx
3 gy

4 ·mb, ga+αa′

3 gb+αb′

4)
output 1 iff b′ = b

10-4

The following two claims are exactly as in the previous proof:

Claim 6
∣

∣ Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ = negl(k).

Claim 7 Pr[A′ = 1|DH] = PrA[Succ].

To complete the proof, we prove the following claim. Note, however, that the proof is now
more complicated than it was previously.

Claim 8
∣

∣Pr[A′ = 1|Rand]− 1

2

∣

∣ = negl(k).

Proof As before, we will show that the claim is true even if A were able to compute
discrete logarithms (which, in general, it cannot since it runs in polynomial time). Further-
more, the overall structure of the proof will be the same — namely, we show that A cannot
make any “bad” decryption queries that do not get rejected, and that conditioned on this
fact A has no information about the encrypted message (since it does not have enough
information about x, y). Since the latter part of the proof is the same, we only consider the
first part of the proof here. The discussion below assumes the reader is familiar with the
proof for the simplified Cramer-Shoup scheme given earlier.

Let us look at the information A possibly learns about a, b, a′, b′ during the course of
the experiment. From the public key, A learns:

logg1
c = a + b · γ (8)

logg1
d = a′ + b′ · γ , (9)

where we again let γ = logg1
g2. Let g3 = gr

1 and g4 = gr′

2 ; as usual, with all but negli-
gible probability we have r 6= r′. When A is given the challenge ciphertext, denoted by
(g3, g4, w

∗ = gx
3 gy

4 ·mb, e
∗ = ga+αa′

3 gb+αb′

4), A additionally learns:

logg1
e∗ = (a + αa′)r + (b + αb′)γr′. (10)

As in the previous proof, we want to show that, with all but negligible probabil-
ity, any “bad” decryption queries made by A — i.e., decryption queries (u, v, w, e) with
logg1

u 6= logg2
v — will be rejected. Recall that A is not allowed to submit (u, v, w, e) =

(u∗, v∗, w∗, e∗). We look at three possible cases:

Case 1. If (u, v, w) = (u∗, v∗, w∗) but e 6= e∗, it is easy to see that this query will always
be rejected.

Case 2. If (u, v, w) 6= (u∗, v∗, w∗) but H(u, v, w) = H(u∗, v∗, w∗) then this means that A
has found a collision in H. But since H is collision-resistant and A runs in polynomial time,
we may assume that this happens with only negligible probability.

Case 3. If H(u, v, w) 6= H(u∗, v∗, w∗), then let α′ = H(u, v, w) (and, as in Equation (10),
α = H(u∗, v∗, w∗)). Let logg1

u = r̂ and logg2
v = r̂′, and recall that since we are considering

“bad” queries we have r̂ 6= r̂′. Looking at the first “bad” decryption query made by A, we
see that it is not rejected only if:

logg1
e = (a + α′a′)r̂ + (b + α′b′)γr̂′.

10-5

The key point is that this equation is linearly independent of Equations (8)–(10), where these
are being viewed as four equations in the four unknowns a, b, a′, b′. (Linear independence
can be verified by “brute-force” calculation, which is worth doing at least once. In fact,
if you work it out you will find that the equations are linearly independent exactly when
r 6= r′ and r̂ 6= r̂′ and α 6= α′, which are exactly the conditions we consider!)

As in the previous proof, this means that the first “bad” decryption query of A is
rejected except with probability 1/q. Continuing in the same way as in the previous proof,
we see that all of the “bad” decryption queries of A are rejected, except with negligible
probability (here, we use the fact that A may make only polynomially-many queries). This
concludes the proof of the claim, and hence the proof of the theorem.

References

[1] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. Crypto ’98. Full version available from
http://eprint.iacr.org.

10-6

CMSC 858K — Advanced Topics in Cryptography March 2, 2004

Lecture 11

Lecturer: Jonathan Katz Scribe(s):
Rengarajan Aravamudhan
Nan Wang

1 Review of the Cramer-Shoup Encryption Scheme

At the beginning of this lecture, we reviewed the proofs of security for both the Cramer-
Shoup “lite” and the full Cramer-Shoup schemes. However, rather than repeating the proofs
here, we instead refer the interested reader to the previous lecture notes.

2 NIZK Proof Systems

Previously in the course, we have seen the Naor-Yung and Dolev-Dwork-Naor encryption
schemes, both of which rely on adaptively-secure non-interactive zero-knowledge (NIZK)
proof systems. In the next few lectures, we will see how to construct such proof systems.
Our discussion is drawn from the work of Feige-Lapidot-Shamir [7, 3, 2, 4] and is also based
on [5, Section 4.10]. We define both “non-adaptive” NIZK and adaptively-secure NIZK.
Although we need adaptively-secure NIZK for our applications, non-adaptive NIZK will be
useful toward developing intuition for the problem.

Definition 1 ((Non-Adaptive) NIZK) A pair of ppt algorithms (P,V) is an NIZK proof
system for a language L ∈ NP if, for some polynomials p1, p2:

– (Completeness) For all x ∈ L ∩ {0, 1}≤p1(k) and witness w for x,

Pr[r ← {0, 1}p2(k);π ← P(1k, r, x, w) : V(1k, r, x, π) = 1] = 1.

We say π is valid proof for x (assuming k, r are clear from context) if V(1k, r, x, π) = 1.

– (Soundness) For all (even unbounded) P∗ and all x 6∈ L, the following is negligible:

Pr[r ← {0, 1}p2(k);π ← P∗(r, x) : V(1k, r, x, π) = 1].

– (Zero-Knowledge) There exists a ppt simulator Sim such that the following two
ensembles are computationally indistinguishable for all ppt A:

{(x,w)← A(1k); r ← {0, 1}p2(k);π ← P(1k, r, x, w) : (r, x, π)}

{(x,w)← A(1k); (r, π) ← Sim(1k, x) : (r, x, π)}.

(We require that A(1k) output (x,w) with x ∈ L∩{0, 1}≤p1(k) and w a witness for x.)

♦

The following definition strengthens the previous one in two ways: first, soundness
holds even when the (cheating) P∗ chooses x 6∈ L after seeing the random string r (i.e.,

11-1

adaptively). Second, the zero-knowledge property holds even when the simulator learns x
after fixing its simulated random string r (in particular, the zero-knowledge property holds
even if an efficient adversary chooses x after seeing the simulated random string).

Definition 2 (Adaptively-Secure NIZK) A pair of ppt algorithms (P,V) is an adaptively-
secure NIZK proof system for a language L ∈ NP if, for some polynomials p1, p2:

– (Completeness) As before. Again, we say π is a valid proof of x (assuming k, r are
clear from context) if V(1k, r, x, π) = 1.

– (Adaptive Soundness) For all (even unbounded) P ∗, the following is negligible:

Pr[r ← {0, 1}p2(k); (x, π)← P∗(r) : V(1k, r, x, π) = 1 ∧ x /∈ L].

– (Adaptive Zero-Knowledge) There exists a ppt simulator (Sim1, Sim2) such that
for all ppt adversaries A the following are computationally indistinguishable:

{r ← {0, 1}p2(k); (x,w) ← A(1k, r);π ← P(1k, r, x, w) : (r, x, π)}

{(r, state)← Sim1(1
k); (x,w)← A(1k, r);π ← Sim2(1

k, x, state) : (r, x, π)},

where we require that A(1k, ·) output a pair (x,w) with x ∈ L ∩ {0, 1}≤p1(k) and w a
witness for x.

♦

We note that it is easy to transform any NIZK proof system into one achieving adaptive
soundness as follows: Let (P,V) be an NIZK proof system satisfying “non-adaptive” sound-
ness. Assume for simplicity that p1(k) = k, and let Badk = L̄∩{0, 1}≤k. Soundness implies
that for any fixed x ∈ Badk, the probability over random choice of r that there exists a
valid proof π for x is negligible, and in particular less than 1/2. (We assume that V simply
rejects if the statement x is longer then p1(k)). Consider the modified protocol (P ′,V ′)
using a random string of length 2k · p2(k) (where p2(·) is the length of the random string
used by (P,V)). The prover P ′(1k, r′, x, w) parses the given random string r ′ as 2k strings
r1, . . . , r2k and runs P(1k, ri, x, w) using each of these strings to generate proofs π1, . . . , π2k.
The verifier V ′ accepts only if all of these proofs are valid (with respect to V).

It is not hard to see that completeness and (non-adaptive) zero-knowledge are unaffected
by this transformation. We now bound the probability, over random choice of common
random string r′, that there exists an x ∈ Badk and a valid proof π = π1, . . . , πn for x. For
any fixed x ∈ Badk, a simple probability calculation shows that the probability, over r ′, that
there exists a valid proof for x is at most 2−2k. In other words, for any given x ∈ Badk at
most a fraction 2−2k strings r′ are “bad” for this x. Then summing over all 2k+1 strings in
Badk shows that at most a fraction 2−k+1 strings r′ are “bad” for some x ∈ Badk. In other
words, the probability of such a “bad” r ′ is at most 2−k+1, which is negligible.

We remark that it is unknown how to convert an arbitrary NIZK proof system into one
achieving adaptive zero-knowledge. However, we will see a specific construction that works.
Let us briefly outline the next few lectures:

11-2

• We first introduce the “hidden-bits” model and show that any NIZK proof system
in this model can be transformed to an NIZK proof system in the real model (i.e.,
where a common reference string is available) assuming the existence of trapdoor
permutations.

• We then show how to construct an NIZK proof system in the “hidden-bits” model.
Coupled with the previous result, this yields a construction of an NIZK proof system
in the real model.

• Finally, we note that the construction above actually achieves adaptively-secure NIZK
without any further modification.

3 The Hidden-Bits Model

Informally, an NIZK proof system in the hidden-bits model proceeds as follows: the prover
is initially given some sequence of bits which are hidden from the verifier. In the course
of proving that x ∈ L, the prover can choose to reveal some arbitrary set of these bits to
the verifier. The verifier never learns the bits of the string that are not revealed to it by
the prover, and the prover cannot cheat and change the values in the string it is given.
Formally, we imagine that the prover is given a string r of length n and sends to the verifier
(along with other information) a set of indices I ⊆ [n] (where [n] = {1, . . . , n}). The verifier
is then given the bits {ri}i∈I , which we denote by rI . We stress that the hidden-bits model
is not meant to be a realistic, but is instead only a conceptual model useful as a step toward
our ultimate goal. The full definition follows.

Definition 3 (NIZK in the Hidden-Bits Model) A pair of ppt algorithms (P,V) is an
NIZK proof system in the hidden-bits model if, for some polynomials p1, p2:

– (Completeness) For all x ∈ L ∩ {0, 1}≤p1(k) and witnesses w for x:

Pr[r ← {0, 1}p2(k); (π, I)← P(1k, r, x, w) : V(1k, rI , x, π, I) = 1] = 1.

– (Soundness) For all (unbounded) P∗, the following is negligible:

Pr[r ← {0, 1}p2(k); (x, π, I)← P∗(r) : V(1k, rI , x, π, I) = 1 ∧ x 6∈ L].

– (Zero-Knowledge) There exists a ppt simulator Sim such that the following are
computationally indistinguishable for all ppt A:

{(x,w) ← A(1k); r ← {0, 1}p2(k); (π, I)← P(1k, r, x, w) : (rI , x, π, I)};

{(x,w)← A(1k); (rI , π, I)← Sim(1k, x) : (rI , x, π, I)}.

(We require that A(1k) output (x,w) with x ∈ L∩{0, 1}≤p1(k) and w a witness for x.)

♦

We now show how to transform any NIZK proof system in the hidden-bits model to an
NIZK proof system in the model where there is a common random string available to the
players. The transformation is secure assuming the existence of any trapdoor permutation
family. (See [6, Appendix C] for further details on necessary assumptions.)

11-3

Theorem 1 Assuming the existence of trapdoor permutations and any NIZK proof system
(P ′,V ′) in the hidden-bits model, we may construct an NIZK proof system (P,V) in the
common random string model.

Proof We first show the construction, and then prove that the construction works as
claimed. We use the following notation for our trapdoor permutation family1: algorithm
Gen(1k) is a randomized algorithm which outputs a pair of (efficiently computable) functions
(f, f−1) where f−1 is called the “trapdoor” for f . Furthermore, f is always a permutation
over {0, 1}k , and f−1(f(x)) = x for all x ∈ {0, 1}k . We also assume that the set of “legal”
f ’s (i.e., those that can possibly be output by Gen) is efficiently decidable.2 Finally, we let
h denote a hard-core bit for this trapdoor permutation family. Formally, this means that
for all ppt algorithms A the following is neglible:

∣

∣

∣

∣

Pr
[

(f, f−1)← Gen(1k);x← {0, 1}k; y = f(x) : A(1k, f, y) = h(x)
]

−
1

2

∣

∣

∣

∣

.

We also assume that h(x), for randomly-chosen x, gives an perfectly unbiased bit (this is
not essential, but it makes the proof slightly easier).

We make the following additional assumptions without loss of generality. First, we
assume that the random string used by Gen(1k) has length k, and hence the maximum
number of different f ’s that can be output is 2k. We also assume that the soundness error
of (P ′,V ′) (i.e., the probability that a cheating P∗ succeeds in giving a valid proof for some
x 6∈ L) is at most 2−2k. Using the technique shown earlier in these notes, if (P ′,V ′) does not
satisfy this condition we may construct a new NIZK proof system (still in the hidden-bits
model) that does satisfy this condition by running 2k copies of (P ′,V ′) in parallel.

Let n = p2(k) refer to the length of the string r ′ given to P ′ in the hidden-bits model
for security parameter k; we simply write n when k is clear from context. In the common
random string model, we let the string r shared by P and V have length k · n. Given a
common string r = r1| · · · |rn, where each ri ∈ {0, 1}

k , the prover and verifier proceed as
follows:

1. P(1k, r, x, w) runs Gen(1k) to obtain (f, f−1). It then computes an n-bit string r ′ by
setting r′i = h(f−1(ri)) (here, r′i simply denotes the ith bit of r′).

2. P then runs P ′(1k, r′, x, w) to obtain π, I. Finally, P outputs f, π, I, and {f−1(ri)}i∈I .

3. V(1k, r, x, (f, π, I, {zi}i∈I)) proceeds as follows: it first checks that f is valid (here is
where we use the fact that the set of f ’s generated by Gen is efficiently decidable).
For each i ∈ I, it checks that f(zi) = ri (if any of these fail, then V outputs 0). Next,
it sets r′i = h(zi) for each i ∈ I. Finally, it outputs V ′(1k, r′I , x, π, I).

The intuition is as follows: assume for a moment that the prover honestly generates (f, f −1)
at random, independent of r. Then the string r ′ constructed by the prover is uniformly
distributed (to see this, note that once f−1 is fixed independent of r then r′i = h(f−1(ri))

1Again, see [6, Appendix C] for more careful treatment of what assumptions are necessary.
2This assumption is necessary for the construction given below. However, it is possible to remove this

assumption using a more complicated construction [1].

11-4

is an unbiased bit for each i). Having the prover send zi = f−1(ri) to the verifier has the
effect of “revealing” the ith bit of r′ to the verifier; also once f−1 is fixed the prover cannot
“cheat” by changing the value of r′i (since the verifier will check that f(zi) = ri before
computing r′i = h(xi), and the inverse of ri under f is unique). Finally, at least informally,
the bits of r′ that are not revealed by the prover to the verifier remain “hidden” by the
security of f−1 and its associated hard-core bit h.

It is immediate that (P,V) satisfies completeness. Next, we prove the soundness of
(P,V). Say that P∗ cheats if it outputs a valid proof for some x 6∈ L. First consider any
fixed (f, f−1). By what we have said above, the string r ′ generated using this pair will be
uniformly distributed and hence the soundness of (P ′,V ′) implies that for any cheating P∗

we have
Prr[P

∗ can cheat using f] ≤ 2−2k.

However, there is nothing to prevent P∗ from generating and using some (f, f−1) in a way
which depends on r! (For example, it is easy to construct a cheating prover that always
picks (f, f−1) in such a way that r′1 = 0, say.) We now use the fact that the number of
possible (valid) f ’s is at most 2k, and also that P∗ cannot send an invalid f to V without
being caught. Summing the above inequality over all possible f ’s shows that:

Prr[P
∗ can cheat using any f] ≤ 2k · 2−2k = 2−k,

which is negligible.
To complete the proof, we show a zero-knowledge simulator for (P,V). Let Sim ′ be the

simulator for (P ′,V ′). We construct simulator Sim for (P,V) as follows:

Sim(1k, x)

(r′I , π, I)← Sim′(1k, x);
(f, f−1)← Gen(1k);
for i ∈ I:
zi ← {0, 1}

k s.t. h(zi) = r′i;
ri = f(zi);

for i 6∈ I:
ri ← {0, 1}

k;
output (r, f, π, I, {zi}i∈I)

Intuitively, there are two differences between real proofs (given by P) and simulated
proofs (given by Sim): first, the simulated proofs use the simulator Sim′ for the original
proof system rather than the actual prover P ′ for the original proof system. Second, the
values {ri}i6∈I now define completely random bits {r ′i}i6∈I in the underlying string r′; this
is not necessarily so for real proofs. However, a hybrid argument will show that the above
differences are inconsequential: the first due to the zero-knowledge of (P ′,V ′) and the second
due to the security of the trapdoor permutation family.

Formally, let A be a ppt algorithm. Our goal is to show that
{

(x,w)← A(1k); r ← {0, 1}k·n; (f, π, I, {zi}i∈I)← P(1k, r, x, w) : (r, x, f, π, I, {zi}i∈I)
}

(1)

and
{

(x,w)← A(1k); (r, f, π, I, {zi}i∈I)← Sim(1k, x) : (r, x, f, π, I, {zi}i∈I)
}

(2)

11-5

are computationally indistinguishable (cf. Definition 1). We define an intermediate experi-
ment via an algorithm Hybrid as follows:

Hybrid(1k, x, w)

r′ ← {0, 1}n;
(π, I)← P ′(1k, r′, x, w);
(f, f−1)← Gen(1k);
for i ∈ I:
zi ← {0, 1}

k s.t. h(zi) = r′i;
ri = f(zi);

for i 6∈ I:
ri ← {0, 1}

k;
output (r, f, π, I, {zi}i∈I)

Claim 2 Assuming that (P ′,V ′) is an NIZK proof system in the hidden-bits model with
simulation Sim′, ensemble (2) is computationally indistinguishable from the following:

{

(x,w)← A(1k); (r, f, π, I, {zi}i∈I)← Hybrid(1k, x, w) : (r, x, f, π, I, {zi}i∈I)
}

. (3)

Assume to the contrary that the claim is false. Then there is a ppt distinguisher D which
can distinguish between the two ensembles with probability that is not negligible. We
construct a D′ which violates the claimed security of Sim′ as a zero-knowledge simulator for
the proof system (P ′,V ′) in the hidden-bits model.

Let A output (x,w) as above. D′ is then given a tuple (r′I , x, π, I) (coming either from
the real prover P ′ in the hidden-bits model, or from Sim′) and runs as follows:

D′(1k, r′I , x, π, I)

(f, f−1)← Gen(1k);
for i ∈ I:
zi ← {0, 1}

k s.t. h(zi) = r′i;
ri = f(zi);

for i 6∈ I:
ri ← {0, 1}

k ;
output D(r, x, f, π, I, {zi}i∈I)

One can check that if (r′I , x, π, I) is distributed according to real proofs generated by P ′,
then the input to D is distributed according to (3). On the other hand, if (r ′

I , x, π, I)
is distributed as the output of Sim′, then the input to D is distributed according to (2).
So the distinguishing advantage of D ′ (in distinguishing real proofs generated by P ′ from
simulated proofs generated by Sim′) is equal to the distinguishing advantage of D. But this
contradicts the zero-knowledge property of (P ′,V ′) with respect to Sim′.

Claim 3 Assuming that Gen defines a secure trapdoor permutation family, ensemble (1) is
computationally indistinguishable from ensemble (3).

Again, we prove this by contradiction. Assume to the contrary that there is a ppt distin-
guisher D which can distinguish between the two ensembles with a probability that is not

11-6

negligible. We then construct a D′ that violates the security of the trapdoor permutation
family. Before doing so, we note the following easy-to-prove fact. The security of Gen (and a
standard hybrid argument) implies that no ppt algorithm D ′, given a randomly-generated
f , outputting a sequence of bits r′1, . . . , r

′
`, and receiving in return a sequence of k-bit values

r1, . . . , r`, can distinguish between the case when each ri is randomly chosen in {0, 1}k and
the case when each ri is randomly chosen in {0, 1}k subject to h(f−1(ri)) = r′i.

Define D′ as follows:

D′(1k, f)

(x,w)← A(1k);
r′ ← {0, 1}n;
(π, I)← P ′(1k, r′, x, w);
for i ∈ I:
zi ← {0, 1}

k s.t. h(zi) = r′i;
ri = f(zi);

output r′
Ī

and get back rĪ ;

// note: for all i, |r′i| = 1 and |ri| = k
output D(r, x, f, π, I, {zi}i∈I)

It is easy to see that in case the values rĪ are randomly chosen in {0, 1}k , then the input
to D is distributed according to (3). Though harder to see, it is also the case that when
the values rĪ are randomly chosen in {0, 1}k subject to h(f−1(ri)) = r′i then the input
to D is distributed according to (1). To see this, note that in (1) r and f are chosen
(independently) at random and these are used to generate r ′ by setting r′i = h(f−1(ri)); on
the other hand, in the above experiment (when the case in question occurs) r ′ and f are
chosen (independently) at random and then r is chosen randomly subject to h(f −1(ri)) = r′i.
Thus, the distributions on (r, f, r′) are the same in both cases. Furthermore, these values
determine the remaining values in each experiment in the same way.

The above shows that the distinguishing advantage of D ′ (in determining which case
occurs) is equal to the distinguishing advantage of D. But, as we have noted above, this
contradicts the security of the trapdoor permutation family.

The above two claims complete the proof of the theorem via a standard hybrid argument.

References

[1] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-Knowledge
Based on any Trapdoor Permutation. J. Crypto. 9: 149–166, 1996.

[2] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/˜feige.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. FOCS, pp. 308–317, 1990.

11-7

[4] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM J. Computing, Vol. 29, No. 1, pp. 1–28, 1999.

[5] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[6] O. Goldreich. Foundations of Cryptography, vol. 2, to appear. Preliminary versions
available from Goldreich’s web page.

[7] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
Advances in Cryptology — CRYPTO ’90, pp. 353–365, 1990.

11-8

CMSC 858K — Advanced Topics in Cryptography March 4, 2004

Lecture 12

Lecturer: Jonathan Katz Scribe(s):

Omer Horvitz
Zhongchao Yu
John Trafton
Akhil Gupta

1 Introduction

Our goal is to construct an adaptively-secure non-interactive zero-knowledge (NIZK) proof
system for any language in NP; we will do so in several steps. We first define the hidden-bits
model, and show how to transform any NIZK proof system for a language L in the hidden-
bits model into an NIZK proof system for L in the common random string model, using
trapdoor permutations. We will then construct an NIZK proof system for any language in
NP in the hidden-bits model.1 Our exposition draws from the work of Feige, Lapidot, and
Shamir [6, 2, 1, 3] and also the presentation of [4, Section 4.10].

1.1 From the Hidden-Bits Model to the CRS model

We begin with a quick review of the definitions at hand.

Definition 1 A pair of ppt algorithms (P,V) is a non-adaptive NIZK proof system for a
language L ∈ NP in the common random string (CRS) model if:

1. Completeness: For all x ∈ L where |x| = k and all witnesses w for x,

Pr[r ← {0, 1}poly(k) ; Π← P(r, x, w) : V(r, x,Π) = 1] = 1.

2. (Adaptive) Soundness: For any (unbounded) algorithm P ∗, the following is negligible:

Pr[r ← {0, 1}poly(k) ; (x,Π)← P∗(r) : V(r, x,Π) = 1 ∧ x 6∈ L].

3. Zero-knowledge: There exists a ppt algorithm Sim such the following ensembles are
computationally indistinguishable for all ppt A:

(1) {(x,w)← A(1k); r ← {0, 1}poly(k) ; Π← P(r, x, w) : (r, x,Π)}
(2) {(x,w)← A(1k); (r,Π) ← Sim(x) : (r, x,Π)},

where x ∈ L, |x| = k, and w is any witness for x.

♦

In the above, r is called the common random string.

1We focus on the case of non-adaptive NIZK. However, careful examination of the constructions show

that we actually end up with adaptively-secure NIZK without any additional modifications.

12-1

Definition 2 A pair of ppt algorithms (P,V) is a non-adaptive NIZK proof system for a
language L ∈ NP in the “hidden-bits” model if:

1. Completeness: For all x ∈ L where |x| = k and all witnesses w for x,

Pr[b← {0, 1}poly(k) ; (Π, I)← P(b, x, w) : V({bi}i∈I , I, x,Π) = 1] = 1.

2. (Adaptive) Soundness: For any (unbounded) algorithm P ∗, the following is negligible:

Pr[b← {0, 1}poly(k) ; (x,Π, I)← P∗(b) : V({bi}i∈I , I, x,Π) = 1 ∧ x 6∈ L].

3. Zero-knowledge: There exists a ppt algorithm Sim such the following ensembles are
computationally indistinguishable for any ppt A:

(1) {(x,w)← A(1k); b← {0, 1}poly(k) ; (Π, I)← P(b, x, w) : ({bi}i∈I , I, x,Π)}
(2) {(x,w)← A(1k); ({bi}i∈I , I,Π)← Sim(x) : ({bi}i∈I , I, x,Π)},

where x ∈ L, |x| = k, and w is any witness for x.

♦

In the above, b is called the hidden-bits string and the {bi}i∈I are the revealed bits. We
denote the latter by bI for brevity.

Let (P ′′,V ′′) be a non-adaptive NIZK proof system for L ∈ NP in the hidden-bits model.
First, we convert the system into one with a precise bound on the soundness error; this will
be useful in the analysis of our main transformation. The idea is to run the given system
enough times in parallel. Assume that on input x of length k, (P ′′,V ′′) uses a hidden-bits
string of length p(k), for some polynomial p. Define (P ′,V ′) as follows2:

P ′(b = b1 · · · b2k, x, w) // bj ∈ {0, 1}
p(k)

For j = 1 to 2k, do
(Πj , Ij)← P

′′(bj , x, w);
Let Π = Π1| · · · |Π2k and I = ∪2k

j=1Ij

Output Π, I.

V ′(bI , I, x,Π)
parse Π as Π1| · · · |Π2k and I as ∪2k

j=1Ij (for simplicity, we assume this can be done

easily, in some uniquely-specified way)
If V ′′(bIj

, Ij , x,Πj) = 1 for all 1 ≤ j ≤ 2k then
output 1;

else, output 0.

Claim 1 If (P ′′,V ′′) is a non-adaptive NIZK proof system for L in the hidden-bits model,
then (P ′,V ′) is a non-adaptive NIZK proof system for L in the hidden-bits model with
soundness error at most 2−2k.

2We will slightly abuse the notation here, formatting the inputs and outputs of the prover and verifier in

a manner that strays from the one specified in the definition, for clarity; this is purely syntactic.

12-2

In the previous lecture, we proved a substantially similar result; we therefore omit proof
here.

We would now like to convert (P ′,V ′) into a non-adaptive NIZK proof system for L in
the CRS model. The idea is to use the CRS to “simulate” the hidden-bits string. This
is done by treating the CRS as a sequence of images of a one-way trapdoor permutation,
and setting the hidden-bits string to be the hard-core bits of the respective pre-images. By
letting the prover have access to the trapdoor, he is able to “see” the hidden-bits and also
to reveal bits in positions of his choosing.

As before, assume that (P ′,V ′) uses a hidden-bits string of length p(k) on security
parameter k. Let algorithm Gen be a key-generation algorithm for a trapdoor permutation
family which, on input 1k, outputs permutations over {0, 1}k . Define (P,V) as follows:

P(r = r0| · · · |rp(k), x, w) // ri ∈ {0, 1}
k

(f, f−1)← Gen(1k);
For i = 1 to p(k) do

bi = r0 · f
−1(ri); // “·” denotes the dot product.

(Π, I)← P ′(b1 . . . bp(k), x, w);

Output (Π, I,
{

f−1(ri)
}

i∈I
, f).

V(r, x, (Π, I, {zi}i∈I , f))
For all i ∈ I

If f(zi) = ri then
let bi = r0 · zi;

else stop and output 0;
Output V ′({bi}i∈I , I, x,Π).

Note that bi is computed as in the Goldreich-Levin construction [5], and is a hard-
core bit for f . This particular hardcore-bit construction is used, as it guarantees that the
“simulated” hidden bits are uniform with all but negligible probability (as opposed to just
negligibly close to uniform when we use a general hardcore bit construction). This follows
from that fact that r0 · y = 0 for precisely half of the strings y ∈ {0, 1}k, and from the fact
that f−1(ri) is uniform in that set, as ri is uniform and f is a permutation. (Of course, this
assumes r0 6= {0, 1}

k , which occurs with all but negligible probability.)

Claim 2 (P,V) is a non-adaptive NIZK proof system for L in the CRS model.

Sketch of Proof (Informal) A full proof appears in the previous lecture, so we just
remind the reader of the highlights here. Completeness of the transformed proof system is
easy to see, as the prescribed P runs P ′ as a subroutine. For soundness, consider first a fixed
trapdoor permutation (f, f−1). As argued above, this (with all but negligible probability)
results in a uniformly-random string b as seen by a cheating prover. So, soundness of the
original proof system implies that a prover can only cheat, using this (f, f−1), with proba-
bility at most 2−2k. But a cheating prover can choose whatever (f, f−1) he likes! However,
summing over all 2k possible choices of (f, f−1) (we assume here (a) that legitimate out-
put of Gen are easily decidable and (b) that Gen uses at most k random bits on security

12-3

parameter k; see last lecture for further discussion) shows that the probability of cheating
(e.g., finding a “bad” (f, f−1) that allows cheating) is at most 2−k over the choice of r.

For zero-knowledge, let Sim
′ be the simulator for (P ′,V ′). Define Sim as follows:

Sim(x)
({bi}i∈I , I,Π)← Sim

′(x);
(f, f−1)← Gen(1k);

r0 ← {0, 1}
k; // assume r0 6= 0

For i ∈ I do

Pick zi ← {0, 1}
k subject to r0 · zi = bi;

Set ri = f(zi);
For i 6∈ I, i ≤ p(k) do

Pick ri ← {0, 1}
k ;

Output (r = r0| · · · |rp(k), (Π, I, {zi}i∈I , f)).

Intuitively, Sim runs Sim
′, chooses f , then comes up with a CRS that is consistent

with the bi’s that Sim
′ produced. Note that Sim does not know the actual distribution of

values for the “hidden bits” at positions i 6∈ I; yet, informally, the security of the trapdoor
permutation (and its hard-core bit) ensure that just choosing random ri at those positions
hides the underlying values at those positions anyway.

A complete proof was given in the previous lecture notes.

2 NIZK for any L ∈ NP in the Hidden-Bits Model

We now construct a non-adaptive NIZK proof system for a particular NP-Complete language
L0 in the hidden-bits model. Note that this implies a similar result for any L ∈ NP : to
obtain a system for any L ∈ NP , simply reduce L to L0 and proceed with the proof system
shown below. Soundness, completeness, and zero-knowledge are all clearly preserved.

Specifically, the language L0 we consider is Graph Hamiltonicity:

L0 = {G | G is a directed graph with a Hamiltonian cycle}

(recall that a Hamiltonian cycle in a graph is a sequence of edges that forms a cycle and
passes through every vertex exactly once). In our construction, a graph with n vertices will
be represented an an n by n boolean matrix, such that entry (i, j) in the matrix is 1 iff there
is an edge from vertex i to vertext j (this is the standard adjacency matrix representation).
In such representation, an n-vertex graph can be identified with a string of length n2.

For now, we will make the assumption that the hidden-bits string is drawn from a non-
uniform distribution: instead of being drawn uniformly over strings of length n2, we assume
it is drawn uniformly from strings of length n2 representing “cycle graphs” (i.e., directed
graphs consisting only of a single Hamiltonian cycle). We will show later how to remove
this assumption. Given this assumption, define (P,V) as follows:

P(b,G,w) // b represents a (random) cycle graph; w is a Hamiltonian cycle in G

Choose a permutation π on the vertices of G at random from those π that
map w onto the directed edges of b;

12-4

(Imagine “overlaying” G onto b such that the cycle w in G lies on top
of the cycle in b)

Let I be the set of positions in b corresponding (under π) to non-edges in G

Output π and I.

V({bi}i∈I , I, G, π)
Verify that π is a permutation, and that I contains all positions in b corresponding
(under π) to non-edges in G

If all the revealed bits at those positions are 0, accept; otherwise, reject.

Claim 3 (P,V) is a non-adaptive NIZK proof system for L0 in the “hidden-bits” model.

Sketch of Proof (Informal) Completeness clearly holds. We show that soundness holds
with probability 1 (i.e., it is impossible for the prover to cheat). Let G be a graph and
assume the verifier accepts. We know that the hidden-bits string b is guaranteed to be a
cycle graph, by assumption on the distribution of b. If the verifier accepts, there must be a
permutation π under which every non-edge of G corresponds to a non-edge (i.e., “0”) in b.
But this means, by contrapositive, that every edge (“1”) in b corresponds to an edge in G.
But since the edges in b form a cycle, this means there must be a cycle in G as well, and
hence G ∈ L0.

To prove zero-knowledge, define Sim as follows:

Sim(G)
Pick a random permutation π on the vertices of G;
Let I be the set of positions corresponding (under π) to non-edges in G

Set the values of all “revealed bits” bI to 0
Output π, bI , and I

In fact, this gives a perfect simulation of P (although seeing this takes some thought). To see
why, let G ∈ L0 (recall that simulation only needs to work for statements in the language)
and consider the distribution over (π, I, bI) in the real-world. Since b is a random cycle
graph, and π is a random permutation mapping the cycle in G to the cycle in b, this means
that π is in fact a random permutation. I is a set of positions to which the non-edges of G

are mapped under π. Finally, the bI are all 0. But this is exactly the distribution produced
by the simulator.

References

[1] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/˜feige.

[2] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. In FOCS, pp. 308–317, 1990.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing 29(1): 1–28, 1999.

12-5

[4] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[5] O. Goldreich and L. Levin. A hard-Core Predicate for all One-Way Functions. In Sym-
posium on the Theory of Computation, 1989.

[6] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
In Advances in Cryptology - CRYPTO ’90, pp. 353-365, 1990.

12-6

CMSC 858K — Advanced Topics in Cryptography March 9, 2004

Lecture 13

Lecturer: Jonathan Katz Scribe(s):
Nagaraj Anthapadmanabhan
Minkyoung Cho
Ji Sun Shin

1 Introduction

In the last few lectures, we introduced the hidden-bits model for non-interactive zero-
knowledge (NIZK) and showed a conversion from any NIZK proof system in the hidden
bits model to one in the real model, using trapdoor permutations. In this lecture, we com-
plete the construction (which we had begin last lecture) of an NIZK proof system in the
hidden-bits model. Putting these results together, we obtain our main goal: a construction
of an NIZK proof system for any language in NP in the common random string model. As
in the previous lecture, our presentation is based on [1, 2, 3, 4, 5] (As noted in the previous
lecture, we focus on the case of non-adaptive NIZK but in fact the constructions given here
achieve adaptively-secure NIZK as well.)

2 An NIZK Proof System in the Hidden-Bits Model

We begin by noting that in order to construct a proof system for an arbitrary language L
in NP , it suffices to construct a proof system for a single NP -complete language.

Claim 1 Given an NIZK proof system for an NP -Complete language L∗, we can construct
an NIZK proof system for any language L ∈ NP .

Proof Let L ∈ NP . Then there exists a polynomial-time function f such that

x ∈ L ⇔ f(x) ∈ L∗

(since L∗ is NP -complete). So, given common input x, the prover and verifier can run the
NIZK proof system for L∗ on common input f(x). Completeness and soundness clearly
hold, and it is not too hard to see that zero-knowledge continues to hold as well.

For this reason, we now focus our attention on constructing an NIZK proof system for
the NP -complete language of graphs containing Hamiltonian cycles (denoted HC).

2.1 Basic Construction

We review a basic construction of an NIZK proof system given in the last lecture. This
proof system will be in a “modified” version of the hidden-bits model, where the hidden
bits are chosen from a particular distribution which is not the uniform one. We then show
how this “non-standard” distribution can be generated from a (long enough) sequence of
uniformly-distributed bits — i.e., in the “actual” hidden-bits model.

13-1

Input: A directed graph G = (V,E) with n vertices and containing a Hamiltonian cycle w
which is known to the prover.

Hidden-bits string: Chosen uniformly from the set of strings representing n-vertex directed
cycle graphs (using adjacency matrix representation). Call the given cycle graph C.

Prover: The prover chooses at random a permutation π on the vertices of G that lines
up the Hamiltonian cycle w of G with the cycle in C. (This means that for every edge
(i, j) in the cycle w, there is a corresponding edge (π(i), π(j)) in C.) The prover outputs π
and also, for every non-edge in G, reveals a non-edge in the corresponding position (with
respect to π) in C. Specifically, if (i, j) is a non-edge in G, then the prover reveals that
entry (π(i), π(j)) in the adjacency matrix of C contains a “0” (i.e., is a non-edge).

Verifier: Verify that π is a permutation and also that for every non-edge in G, the prover
has revealed the corresponding position in C (with respect to π), and this position contains
a “0” (i.e., is a non-edge).

We now argue that this is indeed an NIZK proof system for graph Hamiltonicity:

Completeness: This follows by inspection. In particular, since an honest prover chooses a
π mapping w to the cycle in C, and since C contains only this cycle (and no other edges),
it will indeed be the case that all non-edges in G will map to non-edges in C.

Soundness: We show that the proof system as stated has perfect soundness (and so a
prover has probability 0 of successfully proving a false statement). If the verifier accepts,
this implies there is a permutation π and some cycle graph C (not necessarily known to the
verifier) such that every non-edge in G corresponds to a non-edge in C. But then every edge
in C corresponds to an edge in G. Since C is a cycle graph, this means that G contains a
cycle. (Of course, this relies strongly on the fact that the hidden-bits string defines a cycle
graph, but this is by assumption in the above proof system.)

Zero-knowledge: Let Sim be defined as follows:

Sim(G)

Pick a random permutation π on the vertices of G
Output π
For every non-edge in G, reveal a “0”

The output generated by Sim is perfectly indistinguishable from that generated by a real
prover, assuming G is Hamiltonian. (Recall that indistinguishability is required to hold
only in this case.) In particular: for a real prover, since C is a random cycle graph and
π is randomly chosen from those mapping w onto the cycle in C, the permutation π is a
random permutation (recall that the verifier never sees C). And both the real proof and
the simulated proof reveal a “0” for all positions corresponding to non-edges in G.

2.2 Modified Construction

A problem with the previous construction is that we had assumed that the hidden-bits
string was drawn uniformly from the set of (strings representing) cycle graphs. But in the
actual hidden-bits model, the string is chosen uniformly at random (indeed, this property
was used in the conversion from the hidden-bits model to the model in which a common

13-2

random string is available). So, we need to modify the previous construction; we do so by
showing how to generate a random directed cycle graph from a uniformly-random string,
with noticeable probability (here, we define “noticeable” as “inverse polynomial”).

Toward this goal, we will work with biased bits which take on the value “1” with prob-
ability n−5 and “0” otherwise. (Here and in what follows, we let n denote the number of
vertices in the graph, as well as the security parameter.) It is easy to obtain such biased
bits from a uniform random string by simply parsing the original string in “chunks” of size
5 log2 n, and calling a “chunk” a 1 only if all bits are 1, and a 0 otherwise.

We now define some terminology that will be useful in what follows.

Definition 1 A permutation matrix is a binary matrix in which each row and each column
contain only a single “1”. A Hamiltonian matrix is a permutation matrix that corresponds
to a cycle; i.e., viewed as an adjacency matrix, it corresponds to a directed cycle graph. ♦

Consider the following procedure for generating a random Hamiltonian matrix from a
string of biased bits of length n6: View the string as an n3 × n3 matrix M . We say that M
is useful if it contains an n × n Hamiltonian sub-matrix and all other entries in M are 0.1

We now show that this indeed generates a Hamiltonian matrix with noticeable probability.

Claim 2 Pr[M is useful] = Θ(1
n2).

Proof We first claim that

Pr[M contains exactly n 1’s] = Ω(
1

n
). (1)

To see this, let X be the random variable denoting the number of 1’s in M , and let p =
n−5. Then X follows a binomial distribution with expectation pn6 = n and variance
p(1 − p)n6 < n. Applying Chebyshev’s inequality (see the Appendix), we see that

Pr [|X − n| > n] ≤
n

n2
=

1

n
.

This implies:

2n∑

i=1

Pr [X = i] = 1 − Pr [|X − n| > n]

> 1 −
1

n
.

Since Pr[X = i] is maximal at i = n, we have:

Pr[M contains exactly n 1’s] = Pr[X = n] >

∑2n

i=1 Pr[X = i]

2n

>
(1 − 1

n
)

2n
>

1

3n
,

1For the construction, it suffices to find an n × n Hamiltonian sub-matrix regardless of the values of the

other entries. However, it is not clear that one can find a Hamiltonian sub-matrix in polynomial time in

the general case. Restricting consideration to matrices M having exactly n 1-entries makes the problem of

finding a Hamiltonian sub-matrix easy!

13-3

proving Equation (1).
Given that M contains exactly n 1’s, a “birthday paradox” argument shows that, with

probability Ω(1), no row or column of M contains more than a single 1. This means that
with probability Ω(1

n
), the matrix M contains a permutation sub-matrix. Now, there are

n! permutation matrices, and (n − 1)! Hamiltonian matrices (do you see why?). Thus, the
probability that a random permutation matrix is a Hamiltonian matrix is 1/n.

Let n-ones denote the event that M has exactly n 1’s, let perm denote the event that M
contains a permutation sub-matrix, and let Ham denote the event that M has a Hamiltonian
sub-matrix. Putting everything together, the probability that M is useful is at least

Pr[n-ones] · Pr[perm | n-ones] · Pr[Ham | perm],

and we have shown that the above is Ω(1
n
) · Ω(1) · Ω(1

n
) = Ω(1

n2).

Given the preceding claim, we now show the full construction of a proof system in the
hidden-bits model.

Construction (A Proof System in the Hidden Bits Model for HC):

• Common input: A directed graph G = (V,E) with |V | = n, where n is also the
security parameter.

• Hidden-bits string : A uniformly-distributed string of length n3 · (n6 · 5 log2 n). This
is parsed as n3 matrices, each containing n3 × n3 biased bits as stated above. Denote
these matrices by M1, . . . ,Mn3 .

• For each Mi, check if Mi is useful.

– If not, reveal all the entries of Mi.

– Otherwise (Mi is useful), let Ci denote the n×n Hamiltonian sub-matrix of Mi.
Reveal all n6 − n2 entries of Mi that are not in Ci. Also, use Ci to give a proof
as described in Section 2.1.

• Verifier: (The verifier does not see the hidden string, but recall that it is given the
positions of the bits revealed by the prover. So it makes sense to talk about the
ith matrix Mi even though the verifier does not necessarily see the entire matrix (i.e.,
besides what is revealed to it by the prover).) The verifier accepts only if the following
are true for all n3 matrices:

– If the prover has revealed all of Mi, the verifier checks that Mi is not useful.

– Otherwise, the prover checks that (i) the prover has revealed n6 − n2 entries in
Mi that are 0, while the remaining n2 entries of Mi form an n × n sub-matrix;
and (ii) call the remaining n×n sub-matrix Ci. The verifier verifies the prover’s
proof with respect to Ci exactly as in Section 2.1.

We now argue that the above is an NIZK proof system for HC in the hidden-bits model:

Completeness is immediate. For any Mi that is not useful, the prover can easily convince the
verifier by simply revealing all entries. When Mi is useful, the argument in Section 2.1 holds.

13-4

Soundness is no longer perfect, but instead holds with all but negligible probability. Fol-
lowing the argument given in Section 2.1, soundness holds with probability 1 whenever at
least one of the Mi are useful. The probability that none of the Mi are useful is at most

(1 − Ω(
1

n2
))n

3

≤ e−Ω(n),

which is negligible.

To show zero-knowledge we simply need to modify the simulator given in Section 2.1. The
simulator now proceeds in n3 sequential iterations as follows: in the ith iteration, it generates
n6 · 5 log2 n uniformly-random bits. If this defines a matrix Mi which is not useful, the
simulator simply outputs these bits and moves to the next iteration. If this defines a useful
matrix Mi with Hamiltonian sub-matrix Ci, the simulator outputs all n6 − n2 entries of
Mi that are not in Ci (these entries are all 0), and then runs the simulator of Section 2.1.
Note that this simulator will ignore Ci, and will instead just output a permutation π and
“reveal” a 0 for every non-edge in G (as in Section 2.1).

References

[1] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/˜feige.

[2] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. In FOCS, pp. 308–317, 1990.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing 29(1): 1–28, 1999.

[4] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[5] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
In Advances in Cryptology - CRYPTO ’90, pp. 353-365, 1990.

A Chebyshev’s Inequality

Let X be a random variable with mean µ and variance σ2. Chebyshev’s inequality says
that for any k > 0 we have

Pr[|X − µ| ≥ k] ≤
σ2

k2
.

13-5

CMSC 858K — Advanced Topics in Cryptography March 11, 2004

Lecture 14

Lecturer: Jonathan Katz Scribe(s):
Alvaro A. Cardenas
Kavitha Swaminatha
Nicholas Sze

1 A Note on Adaptively-Secure NIZK

A close look at the constructions we have shown in class for NIZK shows that the given
constructions already satisfy the adaptive zero-knowledge property. Interestingly, to the
best of Prof. Katz’s knowledge there is no known technique for converting an arbitrary non-
adaptive NIZK proof system into an adaptive one. On the other hand, all the examples of
NIZK proof systems of which he is aware happen to be adaptively-secure anyway.

2 The Random Oracle Model

In some sense, we have seen in class essentially all that is known about constructing CCA2-
secure encryption schemes. There are two1 high-level approaches to constructing such
schemes: the first uses generic NIZK (an example of which is the scheme of Dolev-Dwork-
Naor, although there are other examples as well) and the second relies on the techniques first
introduced by Cramer and Shoup (the scheme we showed in class was based on the decisional
Diffie-Hellman assumption, but constructions based on other number-theoretic assumptions
are possible). The first approach currently does not give any practical schemes, since we
do not currently have any examples of practical NIZK proofs (even for specific problems
of interest). The second approach yields very efficient schemes, but is based on specific
cryptographic assumptions. We remark further that even the Cramer-Shoup scheme (and
its variants) is not as efficient as various CPA-secure schemes which are sometimes used in
practice (e.g., El Gamal or (unproven) RSA-based schemes).

Assuming for a moment that only very efficient schemes will actually be used, what
options do we have? One option is to simply resign ourselves to using encryption schemes
satisfying weaker definitions of security (e.g., CPA-secure schemes). Another option is to use
schemes which heuristically seem to protect against chosen-ciphertext attacks (but which
are not provably secure). However, these options are unsatisfying: we have seen already that
chosen-ciphertext attacks represent a real concern in many scenarios, and we also know that
if we do not protect against these concerns in a provably-secure way then we leave ourselves
open to the possibility of an attack.

A third approach is to introduce a new cryptographic model in which to prove schemes
secure. (We will see below that this is not the same as introducing new cryptographic
assumptions with which to build new, provably-secure schemes.) One very successful and
widely-popular model is the random oracle model, first formalized by [1] (although it has

1Recently, a third approach was suggested [3].

14-1

been used previously; see, e.g., [4]). The random oracle model assumes the existence of a
public oracle denoted H which implements a (truly) random function. That is:

1. The oracle is public: all parties, including the adversary, can submit queries x to the
oracle and receive in return H(x). However, queries to the oracle are private so that
if an honest party queries H(x), an external adversary does not see x.

2. The oracle implements a truly random function in the following sense. Say H maps
`-bit strings to n-bit strings. H will maintain a list of pairs L = {(xi, yi)} such that
H(xi) = yi; the list is initially empty. When H receives a query x, it searches through
L for a tuple of the form (x, y): if it finds such a tuple, it returns y. Otherwise, H
chooses a random string y ∈ {0, 1}n, returns the value y, and stores (x, y) in L. In
this sense, H evaluates a function which is truly random (i.e., the value of H(x) at a
point x that has not yet been queried is truly random).

While the above is a fine theoretical model, it does not tell us what to do in practice
with a scheme designed in the random oracle model (random oracles certainly do not exist,
and even if we wanted to implement a [private] random function the space required would
be prohibitive2). In practice, the random oracle will be instantiated with a particular
cryptographic hash function based on, say, SHA-1 or MD5. Overall, then, we will design
cryptographic schemes via the following, two-step process: First, design and prove the
scheme secure in the random oracle model; then, instantiate the random oracle with a
particular hash function H. The intuition is that if H is a “good” hash function, then it
“acts” like a random oracle and thus the scheme should remain secure in the real world.

Is the above claim correct? Can we formally define what it means for a hash function
to be “good” or to “act like a random oracle”? Unfortunately, these questions are still
unresolved. On the one hand, there is no known way to instantiate the random oracle
(in the theoretical model) by a cryptographic hash function (in the real world) in such a
way that the resulting real-world scheme is guaranteed to be secure whenever the scheme
is proven secure in theory. In fact, some negative results are known: for example, there
are signature/encryption schemes which are secure in the random oracle model but which
are insecure in the real world regardless of how the random oracle is instantiated [2]. Even
worse, there are cryptographic tasks which can be achieved in the random oracle model but
cannot be achieved — by any scheme — in the real world.

These negative results make the random oracle model somewhat controversial (in fact,
proofs of security done without using the random oracle are said to be “in the standard
model”), but it is worth considering the arguments in its favor: First, a scheme proven
secure in the random oracle model can be said (very informally) to lack any “structural”
flaws; thus, any attack on the scheme in the real world “must” arise due to some weakness in
the hash function used to instantiate the random oracle, but does not represent a weakness
of the scheme itself (and the hash function can then be replaced with a “better” one).
Furthermore, it is certainly preferable to use a scheme which is provably-secure in the
random oracle model than to use a scheme with no proof of security at all (of course, this
assumes that, for reasons of efficiency, these are the only options. . .). Finally, schemes

2The space required to store a random function mapping `-bit strings to m-bit strings is m · 2` bits. Of
course, in practice one could build the function dynamically as discussed in the text. . .

14-2

designed in the random oracle model are (currently, at least) much more efficient than
schemes proven secure in the standard model: this is the ultimate reason for using the
model, after all.

2.1 How the Random Oracle Model is Used

It might initially be surprising that introducing a “random function” can enable proofs of
security that do not seem possible in the standard model. But we stress that proofs in
the random oracle model rely on much more than the fact that H is “random-looking” or
“unpredictable”: they rely strongly on the fact that an adversary can only learn about the
oracle by making explicit queries to an external oracle. This gives two advantages when
proving security of a scheme: given an adversary A, another algorithm A′ running A as a
subroutinecan see the queries A makes to its random oracle (this is because we imagine A
as an oracle machine which outputs its queries to a special tape — which can be observed
by A′ — and expects to get back answers from a random oracle). Second, A′ can answer
the random oracle queries of A any way it likes. (In general, A′ will have to answer these
queries in a “random-looking” way so that A cannot distinguish whether it is interacting
with a random oracle or with A′, but this still gives A′ an advantage.) We will see examples
of both of these strategies in the next few lectures.

To get a feel for the difficulties that arise when translating this to the real world, note
that if we instantiate a random oracle by, say, SHA-1, then neither of the above conditions
hold (of course!). Furthermore, in the random oracle model a statement like the following
makes sense: “no algorithm can distinguish H(x) from an independent random string with-
out explicitly querying the random oracle at point x” but in the real world the statement
“no algorithm can distinguish SHA-1(x) from an independent random string without ex-
plicitly computing SHA-1(x)” is meaningless. (What does it mean to “compute” SHA-1?
How do we tell whether an algorithm is computing SHA-1 or doing something different?)

It is also important to note that the random oracle model is not at all like the security
model used for pseudorandom functions (PRFs), which we did not get to cover this semester.
In that model, the adversary is provided with oracle access to a function Fs(·) because the
adversary is not supposed to be able to compute Fs(·) (since the seed s is secret). In contrast,
in the random oracle model the adversary is supposed to be able to compute H(·) but we
“force” the adversary (in the theoretical model) to compute it via oracle access only. Note
further that Fs(·) is most definitely not pseudorandom (whatever that might mean) if s is
revealed to the adversary; thus, one cannot simply replace a random oracle with a PRF.

3 Semantically-Secure Encryption in the RO Model

We now give a concrete example of how the random oracle model is used to design schemes,
and how proofs of security in the random oracle model proceed. Before doing so, let us
recall (from Lecture 2) the construction of semantically-secure encryption from trapdoor
permutations in the standard model: Key generation involves choosing f, f−1; the public
key is f , while the secret key is (the trapdoor information needed to compute) f −1. To
encrypt a single bit b, the sender chooses a random domain element x and a random r
and sends ciphertext 〈f(x), (x · r)⊕ b〉 (i.e., we are using here the Goldreich-Levin hardcore

14-3

bit construction). One application of f is needed to encrypt a single bit — this is pretty
inefficient, and one is not likely to do this in practice.

It is worth reminding ourselves also why more efficient approaches do not work. For
example, why not encrypt a (longer) message m by choosing r of the appropriate length and
sending f(m | r)? We noted that this would not be secure in general because f(x) might
leak the first 10 bits, say, of x. In fact, it is known that, in general, a trapdoor permutation
is only “guaranteed” to have at least O(log k) bits (where k is the security parameter. So,
the best we can hope to do (in some sense) is to encrypt log k bits per evaluation of f .

However, the above is all for the standard model. In the random oracle model, however,
we can get an unbounded number of “hardcore” bits from any trapdoor permutation. We
use the fact that the value of H(r) is truly random if (1) H is a random oracle and (2) an
adversary has not explicitly queried H(r). (As noted at the end of the previous section,
statement (1) clearly cannot be true for any concrete instantiation of H since, from an
information-theoretic point of view, f(r) completely determines r and thus H(r), and so
the entropy of H(r) given f(r) is 0! Also, H(r) might be longer than r, implying that we are
creating randomness out of thin air.) Furthermore, given f(r) the adversary is not likely to
query H(r) because that would mean that the adversary had succeeded in inverting f . In
short, we can encrypt a long message m by choosing random r and sending 〈f(r),H(r)⊕m〉.

In more detail, let H map from the domain of the trapdoor permutation family to strings
of length `. Then we can encrypt `-bit messages as follows (in the below, we assume for
simplicity that the domain of the trapdoor permutation is {0, 1}k):

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

Output pk, sk

Epk(m)

r ← {0, 1}k

Output 〈f(r),H(r)⊕m〉

Dsk(〈y, c〉)

r = f−1(y)
Output H(r)⊕ c

Claim 1 The scheme above is semantically secure in the random oracle model if f is chosen
from a trapdoor permutation family.

Proof We need to prove that for every ppt A the following is negligible:

AdvA(k)
def
=

∣

∣

∣

∣

∣

Pr

[

(f, f−1)← Gen(1k); (m0,m1)← AH(f); b← {0, 1};

r ← {0, 1}k ; b′ ← AH(f, 〈f(r),H(r)⊕mb〉)
: b = b′

]

−
1

2

∣

∣

∣

∣

∣

.

Note that we give the adversary access to H, as we must in the random oracle model.
We observe the following: If A never queries H(r) (where r is the random element chosen

in the above experiment), then the value of H(r) is truly random (at least from the point
of view of A) and thus A has no information about the value of b. Let query be the event
that A queries H(r) at some point during the above experiment, and let Succ be the event
that A correctly outputs b′ = b. We then have

AdvA(k) =

∣

∣

∣

∣

Pr[Succ | query] Pr[query] + Pr[Succ | query] Pr[query]−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr[Succ | query] Pr[query] +
1

2
· Pr[query]−

1

2

∣

∣

∣

∣

14-4

=

∣

∣

∣

∣

Pr[Succ | query] Pr[query]−
1

2
· Pr[query]

∣

∣

∣

∣

≤
1

2
Pr[query].

To complete the proof, we show that Pr[query] is negligible.
Given any ppt adversary A as above, we construct an algorithm B that tries to invert

f at a random point in the real world. Since B will not have access to any random oracle,
it will have to simulate the random oracle for A. But this is easy to do: for every query
x made by A to H, simply return a random answer if x was not queried before, or the
same answer given previously if x was queried before (in fact, without loss of generality we
may simply assume that A does not make the same query to H twice). We construct B as
follows:

B(f, y)

run AH(f) until it outputs m0,m1

(answering queries to H as discussed below)
c← {0, 1}`

run AH(f, 〈y, c〉) until it halts
for each query ri made by A to H:

if f(ri) = y output ri and halt
Otherwise, simply return a random `-bit string

Let r
def
= f−1(y) (of course, B does not know this value). Note that B provides a

perfect simulation of the experiment for A up to the point (if any) that A queries H(r). To
see this, observe that f is randomly generated, y = f(r) for a randomly-chosen r (recall
the definition of inverting a trapdoor permutation from earlier lectures), and B faithfully
simulates a random oracle on all points other than r. Now, in the above experiment the
value c is a random string whereas in the real experiment we have c = H(r) ⊕mb where
b is chosen at random. However, if A has not yet queried H(r) then the value of H(r) is
truly random and thus choosing c as a random string results in a perfect simulation. This
continues to be the case up to the point, if any, that A actually queries H(r).

Finally, note that B succeeds in inverting f exactly when query occurs. By the above
reasoning, query occurs in the above experiment with the exact same probability as in the
real experiment. Thus, Pr[query] must be negligible.

We remark that an extension of the above proof can be used to show that the scheme is
secure against non-adaptive chosen-ciphertext attacks (this is left as an exercise). However
the scheme is not secure against adaptive chosen-ciphertext attacks. Consider the algorithm
which, upon receiving ciphertext 〈y, c〉 submits ciphertext 〈y, c⊕1`〉 to the decryption oracle.
By doing so, the adversary can recover H(f−1(y)) (although it does not learn f−1(y) itself),
and thereby figure out which message was encrypted.

4 Toward CCA2 Security in the Random Oracle Model

In the next lecture, we will construct a CCA2-secure encryption scheme in the random
oracle model. In preparation, we first show how to construct an information-theoretically

14-5

secure message authentication code (MAC). Let 	 q denote the field with q elements.

Claim 2 If a, b are chosen at random from 	 q and an adversary is given (m,am + b) (for
m ∈ 	 q of the adversary’s choice) the probability that the adversary can output (m ′, t′) such
that t′ = am′ + b and m′ 6= m is at most 1

q
.

Proof When the adversary is given (m, t), it knows that a, b are chosen uniformly at
random subject to t = am + b. Note that, from the point of view of the adversary, a is
uniformly distributed in 	 q since for every a ∈ 	 q there is exactly a single value of b (namely,
b = t− am) such that t = am + b. Now, for any (m′, t′) with m′ 6= m, we have t′ = am′ + b
iff t′ − t = a(m−m′). Thus

Pr[t′ = am′ + b] = Pr[a = (t′ − t)(m−m′)−1] = 1/q.

This concludes the proof.

This leads to a simple way to authenticate a single message: two parties share random
(a, b) in advance, and to authenticate a message m ∈ 	 q the sender computes t = am+b. An
(all-powerful) adversary can “fool” the receiver into accepting some m′ 6= m with probability
at most 1/q. Choosing q large enough we get as much security as we like.

References

[1] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. ACM Conf. on Computer and Communications Security, 1993.

[2] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology Revisited.
STOC ’98.

[3] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. Eurocrypt 2004.

[4] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. Crypto ’86.

14-6

CMSC 858K — Advanced Topics in Cryptography March 16, 2004

Lecture 15

Lecturer: Jonathan Katz Scribe(s):
Avi Dalal
Abheek Anand
Gelareh Taban

1 Introduction

In the previous lecture, we introduced the notion of message authentication: Given message
m ∈
 q , to authenticate it pick two random secrets a, b ∈
 q and output (m,am + b). The
possibility of an attacker outputting (m′, t′) such that (m′ 6= m) and (t = am′ + b) is at
most 1/q. The security of this message authentication protocol is information-theoretic and
does not rely on any computational assumptions (a proof was given last time). For future

reference, we let Maca,b(m)
def
= am + b.

We will use this message authentication scheme to modify the encryption scheme given
previously and make it secure against adaptive chosen-ciphertext attacks in the random
oracle model. We also introduce OAEP+ and prove its security.

2 The Modified Encryption Scheme

For simplicity, we assume that messages to be encrypted lie in some field
 q with |q| = k
(i.e., the security parameter), and also assume that H maps elements in the domain of the
trapdoor permutation family to elements in
 3

q . (If you like, you can think of messages as

strings of length ` and set q = 2`.)

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

output pk, sk

Epk(m)

r ← {0, 1}k

let H(r) = (a, b, c) ∈
 3
q

C = m + c
t = Maca,b(C)
output 〈f(r), C, t〉

Dsk(〈y, C, t〉)

r = f−1(y)
(a, b, c) = H(r)

if aC + b
?
= t then output C + c

else output ⊥

It is not hard to verify that the scheme gives correct decryption.

Theorem 1 If f is chosen from a trapdoor permutation family, the above scheme is CCA2
secure in the random oracle model.

Proof We assume the reader is familiar with the proof of semantic security for a related
scheme that was given in Lecture 14. The proof here will be similar, but more complicated
because we will now need to take into account the decryption oracle for an adversary
attacking the scheme. Let A be an adversary attacking the scheme, and let r denote the
random value used by the sender (i.e., encryption oracle) in constructing the challenge
ciphertext 〈y, C, t〉 that is given to A. Let query be the event that A make the query

15-1

H(r) at some point during the experiment, and let dec be the event that A submits a
ciphertext 〈y, C ′, t′〉 with (C ′, t′) 6= (C, t) but where this ciphertext is decrypted properly
(i.e., decryption does not result in ⊥).

Since we are in the random oracle model, A can only gain any information about the
encrypted message if either query or dec occur; thus, as in the proof given previously:

AdvA(k) ≤
1

2
Pr[query ∨ dec].

Define H(r) = (a∗, b∗, c∗). Now, if query has not yet occurred then the only information
A has about (a∗, b∗) is that Maca∗,b∗(C) = t. But then the properties of the message
authentication code imply that the probability that dec occurs in any particular query to
the decryption oracle is at most 1/q (note that every “message” has a unique tag, so setting
C ′ = C will not help). Let query1st denote the event that query occurs before dec (including
the case when dec does not occur at all) and define dec1st similarly. The above shows that
if A makes at most qd queries to the decryption oracle we have Pr[dec1st] ≤ qd/q. Putting
everything together we see:

AdvA(k) ≤
1

2
Pr[query ∨ dec]

=
1

2
·
(

Pr[query1st] + Pr[dec1st]
)

≤
1

2
· (Pr[query1st] + qd/q).

For A a ppt algorithm, qd is polynomial and thus qd/q is negligible (this is why we required
|q| = k). To complete the proof, we show that Pr[query1st] is negligible.

Let A be a ppt adversary attacking the scheme who is given access both to the random
oracle H(·) as well as a decryption oracle Dsk(·). We construct the following adversary B
who will try to invert f on a given point chosen at random from the domain of f . As in
the previous proof, B will simulate the experiment for A but this now includes simulating
A’s access to the decryption oracle (since B does not know sk = f−1 we represent the
decryption oracle by D). The oracle queries of A are answered in such a way as to ensure
consistency between the answers given by the different oracles. This is done by storing two
lists: list SH contains tuples (r, a, b, c) such that H(r) = (a, b, c) (as chosen by B), while
list Sy contains tuples (y, a, b, c) such that H(f−1(y)) = (a, b, c) but the important point is
that B may not know f−1(y). We now provide a complete description:

B(f, y)

SH = ∅;Sy = ∅

run AD(·),H(·)(f) until it outputs m0,m1

(answering queries to D and H as discussed below)
C, t←
 q

run AD(·),H(·)(f, 〈y, C, t〉) until it halts
(answering queries to D and H as discussed below)

15-2

To answer query H(ri):

if f(ri) = y output ri and halt the experiment
if ri = rj for some (rj , aj , bj , cj) ∈ SH then return (aj , bj , cj)
if f(ri) = yj for some (yj, aj , bj , cj) ∈ Sy then return (aj , bj, cj)
otherwise, choose (a, b, c)←
 3

q and return (a, b, c)

store ri and the returned values in SH

To answer query D(〈yi, Ci, ti〉):

if yi = y return ⊥
if yi = yj for some (yj , aj , bj , cj) ∈ Sy then decrypt using (aj , bj , cj)
if f(rj) = yi for some (rj , aj , bj , cj) ∈ SH then decrypt using (aj, bj , cj)
otherwise, choose (a, b, c)←
 3

q and decrypt using (a, b, c)

store yi and the (a, b, c) values used in Sy

(Note: “decrypt 〈y, C, t〉 using (a, b, c)” simply means to return C + c if aC + b
?
= t, and

⊥ otherwise.) Clearly, B runs in polynomial time when A does; also, it is easy to see that
B succeeds in inverting f whenever query occurs and, in particular, if query1st occurs. The
above simulation is perfect unless event dec or query occurs. Since we are interested in the
event query1st — which occurs immediately if query occurs first and can no longer occur if
dec occurs first — the probability of event query1st is the same in the above experiment as
in a real execution of A when attacking the encryption scheme. Thus, the security of the
trapdoor permutation family implies that Pr[query1st] is negligible, as desired.

3 Optimal Asymmetric Encryption Padding (OAEP) and OAEP+

A possible drawback of the above scheme is its ciphertext length. Given a trapdoor per-
mutation f acting on k-bit strings, it would be nice to be able to send a ciphertext which
is exactly k bits long. OAEP was designed to do this while allowing the message to be as
long as possible (and while still being secure against chosen-ciphertext attacks).

OAEP was proposed by Bellare and Rogaway in 1994 [1] and is defined for any trapdoor
permutation family. However, the proof was later found to have a subtle error and a number
of fixes were proposed (see [4] for a good discussion of the flaw, and a counterexample which
illustrates that the flaw is real). Fujisaki, et al. [3] and Shoup [4] show that OAEP is in
fact secure when RSA is used as the underlying trapdoor permutation family; the proof of
security relies on specific algebraic properties of RSA and does not hold for an arbitrary
trapdoor permutation. Boneh [2] gave a simplified version of OAEP which is provably-
secure when the RSA or Rabin trapdoor permutation families are used. Shoup [4] showed a
way to modify OAEP so as to be secure for an arbitrary trapdoor permutation family. We
will present this last scheme (called OAEP+) here both because of its generality and also
because it has what is (arguably) the simplest proof.

Let f be a one-way trapdoor permutation, acting on k-bit strings. Also let k0, k1 be
two parameters such that k0 + k1 < k and 2−k0 and 2−k1 are negligible. For example, in
an asymptotic setting one could take k0 = k1 = k/3; more concretely, if RSA is used and

15-3

k = 1024, then we may set k0 = k1 = 128. The scheme encrypts messages m ∈ {0, 1}n

where n = k − k0 − k1. The scheme also makes use of three functions:

G : {0, 1}k0 → {0, 1}n

H ′ : {0, 1}n+k0 → {0, 1}k1

H : {0, 1}n+k1 → {0, 1}k0 .

These three functions will be modeled as independent random oracles in the security anal-
ysis. The scheme is defined as follows:

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

output pk, sk

Epk(m)

r ← {0, 1}k0

s = (G(r)⊕m) ||H ′(r||m)
t = H(s)⊕ r
y = f(s||t)
output y

Dsk(y)

s||t = f−1(y),
(where |s| = n + k1)

r = H(s)⊕ t
parse s as s1||s2,

(where |s1| = n; |s2| = k1)
m = G(r)⊕ s1

if (H ′(r||m)
?
= s2) output m

else output ⊥

The intuition is that this scheme is constructed such that an eventual simulator, who
does not know sk, is able to answer the decryption queries of an adversary A based only on
the oracle queries made by A.

Theorem 2 If f is chosen from a trapdoor permutation family, the above scheme is CCA2
secure in the random oracle model.

Proof The proof given here is organized a little differently from the proof given in [4],
and the reader is advised to look there for much more detail. Let A be an adversary
attacking the scheme. As usual, A will have access to the random oracles in addition to the
decryption oracle (and the encryption oracle as well). We assume without loss of generality
that whenever A makes a query H ′(r||m) it has previously made the query G(r). Let
SG, SH , and SH′ be the set of points at which A has queried G,H, and H ′, respectively.
(These sets grow dynamically each time A queries one of its oracles.) We begin by proving a
claim regarding the decryption queries made by A. If a decryption query made by A results
in response ⊥, we say the query is invalid ; queries which are not invalid are called valid.
Note that any decryption query y made by A (implicitly) defines values s, t, r, and m (just
by following the decryption process); we say a decryption query y is likely to be invalid if,
at the time the query was made, either A had not yet queried H ′(r||m) or A had not yet
queried H(s) (for the r,m, s associated with y). Finally, we say a query is exceptional if it
is likely to be invalid but is, in fact, valid. Then:

Claim 3 Even if A is all-powerful (but can only make polynomially-many queries to its
oracles), the probability that A makes an exceptional query is negligible.

Proof (of Claim 3): Note that this is an information-theoretic argument based on A’s
lack of knowledge about the values of the random oracle on points it has not (yet) queried.
Since A is all-powerful, we may as well dispense with f, f−1 and simply assume that when

15-4

A gets the challenge ciphertext y∗ it immediately recovers s∗||t∗ = f−1(y∗) and that when
A submits a decryption query y it already knows s||t = f−1(y).1 Let m∗ be the message
encrypted to give the challenge ciphertext (note that even an all-powerful A does not know
m∗ unless it queries G(r∗)), and let s∗1, s

∗
2, r

∗, t∗ be defined in the natural way based on
y∗. We focus on a particular decryption query y that A makes after getting the challenge
ciphertext (with s1, s2, r, t defined in the natural way), and show that the probability that y
is exceptional is negligible. Since A makes at most polynomially-many decryption queries,
this suffices to prove the claim.

Consider the query y where s||t = f−1(y), and assume that y is likely to be invalid
(recall, this is either because A has not queried H ′(r||m) or because A has not queried
H(s)). We show that y is invalid with all but negligible probability by considering the
possible cases:

Case 1: A has not queried H ′(r||m) and r = r∗ and m = m∗. Since (r,m) = (r∗,m∗),
we also have s1 = s∗1. If the ciphertext is not invalid, then we must have s2 = s∗2 and hence
t = t∗ as well. But this would imply that y = y∗, and A is prohibited from querying the
decryption oracle with the challenge ciphertext.

Case 2: A has not queried H ′(r||m) and r 6= r∗. In this case, the value of H ′(r||m) is
completely random given A’s view of the experiment (note that H ′(r||m) was not queried
during the course of constructing the challenge ciphertext, either). Thus, the probability
that y is valid is the probability that H ′(r||m) is equal to s2, which is 2−|s2| = 2−k1 and
hence negligible.

Case 3: A has not queried H ′(r||m) and m 6= m∗. The argument in this case is exactly
as in the previous case, so we omit it.

Case 4: A has not queried H(s) and s = s∗. Since we must have y 6= y∗, this implies
that t 6= t∗ and hence r 6= r∗. The only way y can be valid is if H ′(r||m) = s2 = s∗2, where
s∗2 = H ′(r∗||m∗). Thus, y is valid only if A has managed to find a different input hashing to
the same k1-bit value s∗2. Since A makes only polynomially-many queries to H ′, this occurs
with only negligible probability.

Case 5: A has not queried H(s) and s 6= s∗. In this case, the value of H(s) is
completely random from the point of view of A (note that H(s) was not queried when the
challenge ciphertext was constructed, either). Thus, the value of r is completely random
from the point of view of A, and so the probability that A has queried H ′(r||m) is negligible.
Assuming A has not queried H ′(r||m), we reduce to one of the cases considered previously.

Given the above claim, we now prove the theorem in a manner similar to the proof of
Theorem 1 (as well as the proof given in the previous lecture). We will be a little informal
from now on, but the reader should be able to fill in the missing details (indeed, the difficult
part of the proof is the above claim). Note that A has no information about the message that
was encrypted to give the challenge ciphertext unless it queries G(r∗). Also, the probability

1One may wonder why A needs to submit a decryption query if it is all powerful. The point is that in
this claim we are interested in the probability a particular event which is independent of the security of the
encryption scheme (indeed, if A is all-powerful than it can “break” the encryption scheme anyway). This
claim will be used below to prove the actual security of the scheme for a ppt A.

15-5

that A queries G(r∗) without first querying H(s∗) is negligible (since A has no information
about r∗ until it queries H(s∗), and A makes only polynomially-many queries to G). The
preceding two statements are true even if A is all-powerful. So, letting query be the event
that A queries both H(s∗) and G(r∗) we have:

AdvA(k) ≤ Pr[query] + negl(k).

We show that Pr[query] is negligible by giving an informal description of a ppt algorithm
B which uses A as a subroutine and tries to invert f on a given point y∗ chosen at random
from the domain of f . B will simulate the random oracle queries of A in the natural way,
and when A submits messages (m0,m1) to its encryption oracle, B returns the challenge
ciphertext y∗ to A. More interesting is B’s simulation of the decryption oracle for A (recall
that B does not know how to compute f−1): upon receiving decryption query y, B searches
through the list SH′ of queries that A has made thus far to H ′. For each (ri,mi) ∈ SH′ , B
first computes

si = (G(ri)⊕mi)||H
′(ri||mi).

Next, if si 6∈ SH (i.e., A has not queried H(si)), B returns ⊥. Otherwise, B computes

ti = H(si) ⊕ ri and then checks whether y
?
= f(si||ti) (note that B can evaluate f in the

forward direction). If this test succeeds for a particular pair (ri,mi), then B returns mi to
A as the (correct) decryption of y. If the test fails for every i, B returns ⊥.

At the end of the experiment, B looks through the lists SH and SG. For each si ∈ SH

and rj ∈ SG, B computes ti,j = rj ⊕ H(si) and checks whether f(si||ti,j)
?
= y∗. If this is

true for any pair, then B outputs si||ti,j as the (correct) answer.
The proof concludes using the following observations: (1) until query occurs, the only

difference between the view of A in a real experiment and the view of A as simulated by
B occurs when A makes an exceptional query (since, in this case, B returns ⊥ but the
decryption query was valid). However, by the claim proven earlier, this occurs with only
negligible probability. Thus, (2) the probability of query in the experiment as simulated
by B is negligibly close to Pr[query] (i.e., the probability of query in the real experiment).
Finally, (3) B succeeds in inverting y∗ whenever query occurs. Since f is assumed to be a
trapdoor permutation family, putting the above observations together shows that Pr[query]
is negligible.

References

[1] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt with
RSA. Eurocrypt ’94.

[2] D. Boneh. Simplified OAEP for the RSA and Rabin Functions. Crypto 2001.

[3] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure Under the
RSA Assumption. Crypto 2001.

[4] V. Shoup. OAEP Reconsidered. Crypto 2001.

15-6

CMSC 858K — Advanced Topics in Cryptography March 18, 2004

Lecture 16

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 Digital Signature Schemes

In this lecture, we introduce the notion of digital signature schemes, show a construction of
a one-time signature scheme based on one-way functions in the standard model [4], and then
cover the full-domain-hash (FDH) signature scheme based on trapdoor permutations in the
random oracle model [1, 2]. We first define the semantics of a digital signature scheme.

Definition 1 A digital signature scheme consists of a triple of ppt algorithms (Gen,Sign,Vrfy)
such that:

• Gen is a randomized algorithm which, on input security parameter 1k, generates a
pair of keys: a public (verification) key pk, and a secret (signing) key sk.

• Sign, which may be randomized, takes as input a secret key sk and a message m, and
generates a signature σ. We write this as σ ← Signsk(m).

• Vrfy takes as input a public key, a message, and a (purported) signature; it outputs
a single bit b with b = 1 indicating acceptance and b = 0 indicating rejection. (We
assume for simplicity that Vrfy is deterministic.) We write this as b = Vrfypk(m,σ).

For correctness, we require that for all (pk, sk) output by Gen(1k), for all messages m, and
for all σ output by Signsk(m) we have Vrfypk(m,σ) = 1. ♦

Technically, one also has to specify a message space but this will be implicit in all the
schemes we discuss. We sometimes say a signature σ is valid (for a particular message m
and with respect to a particular public key pk) if Vrfypk(m,σ) = 1.

We now give a notion of security for digital signatures, following the definition first given
by [3]. The definition is a rather strong one: we allow an adversary (who is given the public
key) to repeatedly ask for signatures on multiple messages of his choice (this is referred to as
an “adaptive chosen-message attack”); the adversary succeeds if it can output a valid signa-
ture on any message of its choice which was not signed previously (this is called “existential
forgery”). Security requires that the success probability of any polynomial-time adversary
is negligible. This notion corresponds to security against existential forgery under adaptive
chosen-message attacks, and is essentially the strongest considered in the literature.1 One
can imagine weakening this definition in several ways; except for introducing the notion of
one-time signatures (below) we will not pursue this further here.

1Actually, a slightly stronger definition has recently been considered whereby the adversary succeeds

even if it outputs a signature σ on a previously-signed message, such that σ is valid but not identical to one

produced previously by the signer. Many schemes achieve this definition without further modification.

16-1

Definition 2 A signature scheme (Gen,Sign,Vrfy) is existentially unforgeable under an
adaptive chosen-message attack if for all ppt adversaries A, the following is negligible:

Pr[(pk, sk)← Gen(1k); (m,σ)← ASign
sk

(·)(pk) : Vrfy(m,σ) = 1 ∧m 6∈M],

where M is the set of messages submitted by A to the Sign oracle. ♦

In other words, A is allowed to submit a polynomial number of message for signing. Even
based on these signatures, A should not be able to generate a signature on any message not
submitted to the oracle. We will also consider the following weaker definition of security
whereby A is only allowed to submit a single message to its signing oracle. Formally:

Definition 3 A signature scheme (Gen,Sign,Vrfy) is a secure one-time signature scheme if
for all ppt adversaries A, the following is negligible:

Pr[(pk, sk)← Gen(1k); (m,σ)← ASign
sk

(·)(pk) : Vrfy(m,σ) = 1 ∧m 6= m′],

where m′ is the single message that A submitted to its signing oracle. ♦

2 One-Way Functions

One-way functions are simply functions that are efficient to compute but hard to invert.
They form the minimal “hardness” assumption necessary for most of cryptography, includ-
ing symmetric-key encryption and digital signatures. We give a definition here tailored to
a “concrete” security analysis rather than an asymptotic one.

Definition 4 A polynomial-time-computable function f over domain Df is said to be
(t, ε)-one-way if for all adversaries A running it time t we have:

Pr[x← Df ; y = f(x);x′ ← A(y) : f(x′) = y] ≤ ε.

♦

As an informal example, one may conjecture that 2048-bit RSA is currently (5 years, 2−60)-
one-way (note that “RSA” does not quite fit into the above framework, but the definition
can be easily modified to accommodate it). This means that no adversary running in five
years can invert 2048-bit RSA (on a randomly-chosen challenge point, and for randomly
generated modulus) with probability greater than 2−60.

3 The Lamport One-Time Signature Scheme

We now show a one-time signature scheme based on one-way functions. Although not
very practical, this scheme is important for several reasons: (1) it illustrates that sig-
nature schemes (at least weak ones) can be constructed from one-way functions in the
standard model and do not require any sort of “trapdoor” as was initially believed; (2) the
scheme is used as a building block in the construction of many other schemes, including
“full-fledged” signature schemes secure against existential forgery against adaptive chosen-
message attacks. The scheme shown here was suggested by Lamport [4], and we describe it
for messages of length ` and using a one-way function f defined over domain {0, 1}k :

16-2

Gen(1k)

for i = 1 to ` and b ∈ {0, 1}:
xi,b ← {0, 1}

k

yi,b = f(xi,b)

pk
def
=

(

y1,0 · · · y`,0

y1,1 · · · y`,1

)

sk
def
=

(

x1,0 · · · x`,0

x1,1 · · · x`,1

)

output (pk, sk)

Signsk(m)

let m = m1 · · ·m`

with mi ∈ {0, 1}
let sk be as before
output (x1,m1

, . . . , x`,m`
)

Vrfypk(m,σ)

parse σ as (x1, . . . , x`)

if f(xi)
?
= yi,mi

for 1 ≤ i ≤ `
output 1

else output 0

Theorem 1 If f is (t, ε)-one-way (for some particular value of k) and requires time tf

to evaluate (in the forward direction), then no adversary running in time O(t − 2`tf) can
“break” the one-time security of the scheme with probability better than 2`ε.

In particular, since ` and tf are polynomial in k, this means that if f is (asymptotically)
one-way then the Lamport scheme is (asymptotically) secure.

Proof Assume to the contrary that there exists an adversary A′ running in time t′ =
O(t − 2`tf) and forging a signature with probability ε′ > 2`ε. We construct an adversary
A running in time t and inverting f with probability better than ε, a contradiction.

Define algorithm A (which gets a value y and tries to find an x ∈ {0, 1}k such that
f(x) = y) as follows:

A(y)

i∗ ← {1, . . . , `}; b∗ ← {0, 1}
yi∗,b∗ = y
for all i, b with 1 ≤ i ≤ ` and b ∈ {0, 1} and (i, b) 6= (i∗, b∗):

xi,b ← {0, 1}
k ; yi,b = f(xi,b)

pk =

(

y1,0 · · · y`,0

y1,1 · · · y`,1

)

run A′(pk) until it requests a signature on m = m1 · · ·m`

if mi∗ = b∗, abort; otherwise, return the correct signature to A′

eventually, A′ outputs a forged signature (x1, . . . , x`) on m′

1 · · ·m
′

`

if m′

i∗ 6= b∗ abort; otherwise, output xb∗

In words, A does the following: it first chooses a random index i∗ and a random bit b∗.
This defines a position in the public key at which A will place the value y that it wants to
invert. (Namely, A′ sets yi∗,b∗ = y.) The remainder of the public key is generated honestly.
This means that A can output a correct signature for any message m such that mi∗ 6= b∗.
Then, A runs A′ (giving A′ the public key that A prepared) until A′ requests a signature
on message m. As noted, A can generate a perfectly valid signature as long as mi∗ 6= b∗.
Otherwise, A simply aborts and gives up.

Assuming A has not aborted, it gives the signature thus computed to A′ and continues
running A′ until A′ returns a (supposed) forgery (x1, . . . , x`) on message m′

1 · · ·m
′

`. Con-
ditioned on the fact that A′ has not aborted, this is a valid forgery with probability ε′. A
valid forgery in particular means that f(xi∗) = yi∗,m′

i∗
and also that m′ 6= m. In this case,

if we also have m′

i∗ = b∗ then A has found an inverse for y (since yi∗,b∗ = y).

16-3

We now analyze the probability that A finds a correct inverse. This occurs as long as
the following three things happen: (1) A is able to return a correct signature to A ′ (i.e.,
mi∗ 6= b∗); (2) A′ outputs a valid forgery; and (3) the forgery satisfies m′

i∗ = b∗. The
probability of event (1) is 1/2 since b∗ was chosen at random, and is independent of the
view of A′ up to and including the point when it requests a signature on message m (this
follows since all entries yi,b [including yi∗,b∗] of the public key are computed by choosing
a random element xi,b from the domain of f and then setting yi,b = f(xi,b)). Conditioned
on the fact that event (1) occurs, the probability of event (2) is exactly ε′, the assumed
probability of forgery for A′. Finally, conditioned on the fact that events (1) and (2) both
occur, we must have m′ 6= m. So there exists at least one position i such that mi 6= m′

i.
If this i equals i∗ then we are done (since event (1) occurred we know that mi∗ 6= b∗ so
m′

i∗ = b∗). Since m′ is ` bits long and since the value of i∗ is independent of the view of A′

up to this point, i is equal to i∗ with probability at least 1/`.
Putting everything together, we see that A inverts f with probability 1

2 ·ε
′ · 1` = ε′/2` > ε.

Also, A runs in time (essentially) t′ + (2`− 1)tf < t. This contradicts the assumed security
of f , proving that A′ as described cannot exist.

4 Full Domain Hash (FDH)

As we have mentioned in passing previously, “full-fledged” signature schemes can be con-
structed from the minimal assumption of one-way functions (if you think about it, this
is quite an amazing result!). However, constructions based on general assumptions such
as one-way functions are not very practical. In fact, there is essentially only one known
construction of a secure signature scheme in the standard model which is practical. Thus,
we turn to the random oracle model to help us design efficient and provably-secure (albeit
with all the caveats of the random oracle model) scheme based on trapdoor permutations.
Before presenting the scheme, we define a concrete notion of security for the latter.

Definition 5 Let Gentd represent a generation algorithm for a trapdoor permutation family.
We say this family is (t, ε)-secure if for all adversaries A running in time at most t we have:

Pr[(f, f−1)← Gentd; y ← Df ;x← A(f, y) : f(x) = y] ≤ ε,

where Df is the domain/range of f (implicit in the description of f). ♦

We now describe the full-domain hash (FDH) signature scheme [1].

Gen(1k)

(f, f−1)← Gentd

let H : {0, 1}∗ → Df

pk = (f,H); sk = f−1

output (pk, sk)

Signsk(m)

output σ = f−1(H(m))

Vrfypk(m,σ)

output 1 iff f(σ)
?
= H(m)

It is not hard to see that correctness is satisfied. We now show that the scheme is secure if
H is modeled as a random oracle.

16-4

Theorem 2 If Gentd is (t, ε)-secure and f requires time tf to evaluate, then no adversary
running in time O(t − qh · tf) can “break” FDH in the sense of existential unforgeability
under adaptive chosen-message attack with probability better than qh ·ε in the random oracle
model. Here, qh is a bound on the number of hash queries made by the adversary.

Again, since qh and tf are polynomial in the security parameter, this means that FDH is
asymptotically secure as well.

Proof Assume to the contrary that there exists an adversary A′ running in time t′ =
O(t−qh·tf) that succeeds in breaking the scheme with probability ε′ > qh·ε. We construct an
adversary A running in time t and inverting f with probability better than ε, a contradiction.
We assume without loss of generality that (1) whenever A′ asks a query Signsk(m), it has
previously asked query H(m); (2) if A′ outputs alleged forgery (m,σ), it has previously
queried H(m) and has not previously queried Signsk(m); and (3) A′ never queries the same
value twice to H. Construct A (who tries to invert f at point y) as follows:

A(f, y)

choose i∗ ← {1, . . . , qh}
run A′(f), answering queries to H and Signsk as follows:
on the ith query mi to H:

if i = i∗ return y
else, xi ← Df and return yi = f(xi)

on query Signsk(m):

let i be such that m = mi

(i.e., m was the ith query to H)
if i = i∗ abort
otherwise, return xi

when A′ outputs (m∗, σ), find i such that m∗ = mi

if i 6= i∗ abort
else output σ

We make a number of observations about A. First, if A does not abort before A′

outputs its (supposed) forgery, then the simulation provided for A′ is perfect: all queries to
the random oracle are answered with a point in Df chosen independently at random (where
we use the fact that f is a permutation, and also the fact that y is chosen at random) and
all signing queries are answered correctly (since f(xi) = H(mi) be construction). Second,
if A does not abort during the course of the entire experiment that means m∗ = mi∗ and
hence if A′ has output a valid forgery we have f(σ) = H(mi∗) = y, and thus A succeeds in
inverting f at y. Finally, the running time of A is (essentially) t′ + (qh − 1)tf ≤ t.

It remains to analyze the probability that A does not abort. Note that A does not abort
whenever m∗ = mi∗ (since in this case A′ has also not queried Signsk(mi∗)). Furthermore,
the value of i∗ is information-theoretically hidden from A′ until such time (if any) that A
aborts. Since m∗ = mi for some i ∈ {1, . . . , qh}, the probability that m∗ = mi∗ is exactly
1/qh. The probability that A outputs a correct inverse is therefore ε′/qh > ε, giving the
desired contradiction.

16-5

4.1 An Improved Security Reduction Using RSA [2]

The proof in the previous section shows that FDH is asymptotically secure. In practice,
however, the concrete security bound derived may not be “good enough” (or, put another
way, achieving a reasonable level of security may not be “efficient enough”). For example,
say we set qh ≈ 250 which simply means that an adversary evaluates SHA-1 on their own
computer 250 times (this is a large, but perfectly reasonably, number). If we use a trapdoor
permutation which is (5 years, 2−60)-secure for sake of argument, say 2048-bit RSA), then
the proof given previously shows that an adversary running for 3 years. . . cannot forge a
signature in FDH with probability better than 250 · 2−60 = 2−10, which is not such a great
guarantee! Of course, we can always “fix” this by using larger moduli; for example, if
we assume that 4096-bit RSA is (5 years, 2−120)-secure then we achieve the acceptable
probability of forgery 250 · 2−120 = 2−70. In this case, however, our scheme will be less
efficient (since we are using a large modulus).

A natural question is: can we design a signature scheme with a better security reduction
(say, where the probability of forgery is roughly equal to the probability of inverting the
trapdoor permutation)? Or, can we improve our proof of security for the case of FDH?
Both of these problems have been considered, and we will focus on the second one here.
In particular, we will show that for the particular case when RSA is used as the trapdoor
permutation for FDH, a better security reduction can be obtained. (The technique relies
on some specific algebraic properties of RSA, and extends to other trapdoor permutations,
but not to all trapdoor permutations.)

Theorem 3 If the RSA trapdoor permutation (for some particular choice of key length) is
(t, ε)-secure and takes time tf to evaluate, then no adversary running in time O(t− qh · tf)
can “break” RSA-FDH with probability better than O(qs · ε) in the random oracle model.
Here, qs is a bound on the number of signature queries made by the adversary.

Note that this offers much better security since qs � qh (it is much harder to get a signer
to “obliviously” sign something for you than to evaluate a hash function repeatedly).

Proof Here, we let f = (N, e) be the RSA function (where the modulus N is generated
at random, and e is relatively prime to ϕ(N)). Assume to the contrary that there exists
an adversary A′ running in time t′ = O(t − qh · tf) that succeeds in breaking the scheme
with probability ε′ > 3qs · ε. We construct an adversary A running in time t and inverting
f with probability better than ε, a contradiction. We assume without loss of generality
that (1) whenever A′ asks a query Signsk(m), it has previously asked query H(m); (2) if
A′ outputs alleged forgery (m,σ), it has previously queried H(m) and has not previously
queried Signsk(m); and (3) A′ never queries the same value twice to H or Signsk. We now
construct A (who tries to find y1/e mod N) as follows:

A(N, e, y)

run A′(pk = (N, e)), answering queries to H and Signsk as follows:
on the ith query mi to H:

xi ← � ∗

N

with probability γ set bi = 0 and return xe
i mod N

otherwise (i.e., with probability 1− γ) set bi = 1 and return xe
i · y mod N

16-6

on query Signsk(m):

let i be such that m = mi

(i.e., m was the ith query to H)
if bi = 1 abort
otherwise, return xi

when A′ outputs (m∗, σ), find i such that m∗ = mi

if bi = 0 abort
else output σ/xi mod N

Here, γ is a parameter we will fix later. For future reference, note that the running time of
A is (essentially) t′+(qh−1)tf ≤ t (since an RSA exponentiation dominates multiplications
and other operations modulo N).

The hash queries of A′ can be divided into two classes: “class 0” (with b = 0) consists

of messages mi for which A knows xi
def
= H(mi)

1/e; thus, A can answer signing queries for
messages in this class, but if A′ forges a signature for a message in this class it does not
help A (since it already knows a “forged signature” for this message anyway). “Class 1”
(with b = 1) consists of messages for which A knows an xi such that xe

iy = H(mi); now, A
cannot answer signing queries for such messages, but if A′ forges a signature for a message
in this class then A can invert y as follows: if σ = H(mi)

1/e then:

σ/xi mod N = H(mi)
1/e/(xe

i)
1/e = (H(mi)/x

e
i)

1/e = y1/e;

i.e., σ/xi is the desired inverse of y.
Now, until such time (if any) that A aborts, the simulation provided to A′ is perfect (in

particular, all queries to the random oracle are answered with an independent and uniformly-
random point in � ∗

N), and furthermore A′ has no information about which messages are in
class 0 and which are in class 1. Since the probability that A does not abort is given by the
product of the probabilities that (1) all the signing queries of A′ are for “class 0” messages,
and (2) the purported forgery of A′ is for a “class 1” message, the probability that A does
not abort is Pr[no abort] = γqs(1 − γ). Choosing γ = qs

qs+1 maximizes this expression and

gives Pr[no abort] = e−1/qs (where e ≈ 2.72 is the base of natural logarithms). Putting
everything together, the probability that A outputs a correct inverse is ε ′/(e ·qs) > ε, giving
the desired contradiction.

References

[1] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. ACM Conference on Computer and Communications Security, 1993.

[2] J.-S. Coron. On the Exact Security of Full Domain Hash. Crypto 2000.

[3] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308, 1988.

[4] L. Lamport. Constructing Digital Signatures from a One Way Function. SRI Interna-
tional Technical Report CSL-98 (October 1979).

16-7

CMSC 858K — Advanced Topics in Cryptography April 1, 2004

Lecture 17

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 “Limitations” of NIZK Proof Systems

In the NIZK proof systems we have seen, we have assumed that the prover and verifier
share a common random string (CRS). Although in many applications of NIZK such an
assumption presents no problem (e.g., in the application to chosen-ciphertext-secure public-
key encryption, the receiver chooses a random string and includes it in her public key), in
the general case it is not clear where this string comes from (if no trusted third-party is
assumed). A natural question is whether NIZK can be achieved without a common random
string. In fact, it is easy to see that this is impossible for any “non-trivial” language:

Lemma 1 NIZK proofs are impossible without a CRS for any language L 6∈ BPP.

Proof (Sketch) Let (P, V) be an NIZK proof system for some language L ∈ NP , with
polynomial-time simulator Sim. For simplicity, we assume the protocol has perfect com-
pleteness and negligible soundness error, although these assumptions are not necessary. Our
goal is to prove that L ∈ BPP . By definition of NIZK, for any x ∈ L the distribution of
proofs π output by P(1k, x, w) (where w is a witness for x) is indistinguishable from the
distribution of proofs π output by Sim(1k, x). In particular, we have V(Sim(1k, x), x) = 1
with probability negligibly close to 1 for x ∈ L (this follows from perfect completeness).

We show how to decide membership in L using a ppt algorithm A (by definition, this
implies L ∈ BPP). A works as follows: given x, it computes π ← Sim(1k, x) and outputs 1
iff V(π, x) = 1. By what we have said above, the probability that A outputs 1 when x ∈ L
is negligibly close to 1. On the other hand, soundness of the proof system implies that the
probability that A outputs 1 when x 6∈ L is negligible (since otherwise we have an easy way
to “fool” V into accepting a proof of a false statement).

It is instructive to see where the previous proof fails when a common random string
r is available. In that case the simulator gets to choose r, so a simulator which outputs
“valid-looking” proofs for false statements does not contradict the soundness of the NIZK
proof system (since soundness holds with respect to the fixed string r that the cheating
prover cannot change).

The above demonstrates that interaction is necessary if we want to have zero-knowledge
protocols which do not rely on any set-up assumptions (such as a common random string).

2 Zero-Knowledge (Interactive) Proof Systems

Note: Definitions of zero-knowledge are quite subtle and, although we will do our best to
be accurate, we may omit some details for simplicity. The interested reader is referred to

17-1

other works [2, 3] for more details and a more rigorous and careful treatment.
We first define the notion of zero knowledge. Note that the definition is more complex

than in the non-interactive case because in the latter case we only need to consider the
proofs generated by a legitimate (honest) prover; in the interactive case, on the other hand,
we must also consider the actions of a prover when interacting with a dishonest verifier who
may not follow the protocol.

Definition 1 A pair of ppt algorithms (P,V) is called a zero-knowledge (ZK) proof system

for a language L ∈ NP (with Lk
def
= L ∪ {0, 1}≤k) if it satisfies the following properties:

1. (Completeness) For all k, all x ∈ Lk, and all witnesses w for x,

Pr[V(1k, x) accepts when interacting with P(1k , x, w)] = 1.

2. (Soundness) For all x 6∈ Lk and all (even all powerful) P∗, the following is negligible:

Pr[V(1k, x) accepts when interacting with P∗(x)].

3. (Zero knowledge) For all ppt (cheating verifiers) V ∗, there exists an (expected)
polynomial time simulator Sim such that the following are computationally indistin-
guishable for any x ∈ Lk and witness w for x:

• the view of V∗(1k, x) when interacting with P(1k, x, w);

• the output of Sim(1k, x).

♦

Note that the simulator is given exactly what the verifier knows. Thus, the intuition behind
a ZK proof is that “anything a poly-time cheating verifier can learn from its interaction
with P it could learn on its own, anyway (in essentially the same amount of time)”. In the
definition above, we allowed Sim to run in expected polynomial time rather than requiring
it to run in (strict) polynomial time.1 Also, the above definition considers only uniform
poly-time cheating verifiers; the “standard” definition, however, requires the zero-knowledge
condition to hold even for non-uniform poly-size cheating verifiers (i.e., poly-time verifiers
with auxiliary inputs) for good reason. (We have chosen to ignore the issue for ease of
presentation.) See [2, 3] for further details.

We first show a ZK proof system for the language of graph isomorphism.

Definition 2 Let G1(V1, E1) and G2(V2, E2) be two graphs, where Vi is the set of vertices
and Ei is the set of edges of Gi. The graphs G1 and G2 are isomorphic (denoted by G1 ≈ G2)
if there exists a permutation ϕ : V1 → V2, such that (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.
Such a ϕ is called an isomorphism from G1 to G2. We also let ϕ(G1) denote the graph
obtained by “permuting” the vertices of G1 according to ϕ and preserving edges; clearly,
G2 = ϕ(G1) (hopefully, using ϕ to refer to a permutation of the vertex set of G1 as well as
to a permutation of the graph G1 will not cause confusion). ♦

1Allowing the simulator to run in expected poly-time is somewhat “controversial”, and certainly strict
polynomial time simulation is preferable. However, the only currently-known way to achieve “reasonably-
efficient” ZK protocols is to allow expected poly-time simulation. For more discussion, see [2] or [1].

17-2

Define the language graph isomorphism by L
def
= {(G1, G2) | G1 ≈ G2}. Clearly, we have

L ∈ NP (since it is easy to check that a given isomorphism is valid). Consider the following
proof system for L: the prover begins with G1, G2, and an isomorphism ϕ from G1 to G2;
the verifier knows only G1, G2. The protocol proceeds as follows:

1. P chooses a random permutation ϕ′, and sends H = ϕ′(G1) to V.

2. The verifier chooses a random b ∈ {1, 2} and sends b to P.

3. We assume the verifier sends a b ∈ {1, 2} (any other response can be taken, by
default, to represent a “1”), and the prover will send an isomorphism from Gb to H.
In particular, if b = 1 then the prover sends ϕ′; if b = 2, the prover sends ϕ′ ◦ ϕ−1

(i.e., the composed permutation).

4. The verifier receives a permutation ϕ′′ and accepts iff ϕ′′(Gb)
?
= H.

Theorem 2 The above is a zero-knowledge protocol (with soundness error 1/2) for graph
isomorphism.

Proof Clearly, P and V can be implemented in polynomial time. We now argue com-
pleteness. Assume the prover acts honestly, and so H = ϕ′(G1) for some permutation ϕ′.
If b = 1 then the verifier clearly accepts. If b = 2, then the verifier also accepts since in this
case ϕ′′(G2) = ϕ′ ◦ ϕ−1(G2) = ϕ′(G1) = H.

We now show that the above protocol achieves soundness error 1/2 (meaning that if
G1, G2 are not isomorphic, then no prover can make a verifier accept with probability
better than 1/2). Assume G1 6≈ G2, and let H be the graph sent by the prover in the first
round. Note that at most one of G1 ≈ H or G2 ≈ H can be true (if they are both true,
then by transitivity we have G1 ≈ G2 which we know is not the case). So the prover can
respond correctly to at most one of the verifier’s possible challenges sent in the third round,
and thus will succeed in making the verifier accept with probability at most 1/2. (The
soundness error is not negligible, as required by Definition 1; however, we discuss below an
easy way to modify the protocol to achieve negligible soundness error.)

The most interesting property to consider is the zero knowledge of the above protocol.
To that end, we show the following simulator for any cheating verifier V ∗ (recall from the
definition that the simulator is allowed to depend — in fact, must depend — on the verifier):

Sim(1k, (G1, G2))

fix random coins ω for V ∗

for i = 1 to k:
choose a random permutation ϕ′

b← {1, 2}
H = ϕ′(Gb)
run V∗(1k, (G1, G2),H;ω) to obtain its response b′

if b = b′ output view (ω,H, b, ϕ′) and stop
if none of the above iterations have succeeded, output ⊥

Fix (G1, G2) ∈ L (recall that Definition 2 only requires simulation in this case). We first
analyze the probability that Sim outputs ⊥. In any given iteration of the inner loop and

17-3

for any value of ω, note that the value of b chosen by the simulator is perfectly independent
of H: the graph H is a random isomorphic copy of Gb, but that has the same distribution
as a random isomorphic copy of Gb̄ (since G1 ≈ G2). That means that the value of b is
independent of the view of V ∗ in line 4 of the inner loop. Therefore, the probability that
b′ = b is exactly 1/2. Overall, then, the probability that we never have b = b′ is 2−k, which
is negligible. So, Sim outputs ⊥ with only negligible probability.

We next claim that, conditioned on Sim not outputting ⊥, the output of Sim is identically
distributed to the view of V∗. To see this, let us consider the elements of the view (ω,H, b, ϕ′)
one-by-one: clearly, ω is a random string having the same distribution as ω in a real
interaction of V∗ with P. The next component, H, is a random isomorphic copy of Gb for
some b, but we have already noted above that this is distributed identically to a random
isomorphic copy of G1 (which is what P sends in the real protocol). The challenge bit b is
then a deterministic function of ω and H (since we have already fixed the coins ω of V ∗),
and in both the real and simulated experiments is equal to V ∗(1k, (G1, G2),H). Finally, in
the simulation ϕ′ is uniformly distributed among isomorphisms mapping Gb to H; again,
this is exactly as in a real execution of the protocol.

We remark that the above simulator runs in strict polynomial time.

The proof system presented above has soundness error 1/2, but it is easy to make the
soundness error as small as desired (and, in particular, negligible): simply repeat the above
protocol ` times to achieve soundness error 2−`. Setting ` = ω(log k), the protocol can still
be implemented in polynomial time and the soundness error becomes negligible.

We need to be careful, however, that in changing the protocol we do not destroy its
zero-knowledge property! There are two natural ways to implement the `-fold repetition
suggested above: the first is to run the ` instances of the protocol in parallel : in round 1 the
prover sends ` different graphs H1, . . . ,H` (each computed using an independent isomor-
phism); in round 2 the verifier replies with ` challenges b1, . . . , b`, and in round 3 the prover
responds to each challenge as in the original protocol. The second natural possibility is to
run ` instances of the protocol sequentially in the obvious way. A drawback of the latter
method is that the round complexity becomes O(`), whereas when using the first method
the round complexity remains the same (i.e., three rounds) as in the original protocol.

Unfortunately, running the above protocol in parallel for ` = ω(log k) is not known to
result in a zero knowledge protocol. (It is not known definitively that the protocol is not 2

zero knowledge, but there is no known way of proving that the protocol is zero knowledge,
either.) To see the difficulties that arise, imagine adapting the simulator given earlier for the
case of `-fold parallel repetition. Now, the simulator will “guess” in advance the challenge
bits b1, . . . , b`, construct graphs H1, . . . ,H` in the appropriate way, and then hope that the
output b′1, . . . , b

′
` of V∗ satisfies b′i = bi for all i. But the probability that this occurs is 2−`

(note that we cannot assume that V∗ uses the same challenge bits every time — for all we
know, V∗ may choose its challenge bits based on all the graphs H1, . . . ,H` sent by P in
the first round). If ` = O(log k) then 2−` is inverse polynomial, and so by repeating this
process some sufficiently-large polynomial number of times the simulator will succeed with
all but negligible probability (as in the case of the original simulator). On the other hand,
if ` = ω(log k) then 2−` is negligible and so any simulator of this sort running in (expected)

2Although there are reasons to believe that constructing a simulator for this protocol will be “difficult” [4].

17-4

polynomial time will only succeed in outputting a valid view with negligible probability.
But we need ` = ω(log k) to obtain negligible soundness error. . .

The good news is that `-fold sequential repetition of the above protocol does result in a
zero-knowledge protocol for any ` = poly(k) (note that we must have ` = poly(k) in order
for the protocol to run in polynomial time).3 The simulator for this protocol will essentially
run the simulator given earlier, ` times sequentially. For completeness, we describe the
simulator here but leave the analysis to the reader:

Sim(1k, (G1, G2))

fix random coins ω for V ∗

let view0 = ω
for i = 1 to `:

for j = 1 to k:
choose a random permutation ϕ′

b← {1, 2}
H = ϕ′(Gb)
run V∗(1k, (G1, G2), viewj−1,H) to obtain its response b′

if b = b′, let viewj = viewj−1||(H, b, ϕ′) and exit loop
if none of the above iterations have succeeded, output ⊥

output view`

3 Honest-Verifier Zero Knowledge

A weaker definition of zero knowledge which is often useful is that of honest-verifier zero
knowledge (HVZK). In this case, we only require simulation for a verifier who honestly
follows the protocol, but may later try to learn some information (that it wasn’t supposed
to) from the transcript. This models so-called “honest-but-curious” adversaries who act in
this way, and also models adversaries who eavesdrop on an honest execution of a protocol
(between an honest verifier and the prover).

Definition 3 A pair of ppt algorithms (P,V) is called a zero-knowledge (ZK) proof system

for a language L ∈ NP (with Lk
def
= L ∪ {0, 1}≤k) if it satisfies the following properties:

1. (Completeness and soundness) As in Definition 1.

2. Honest-verifier zero knowledge There exists a polynomial time simulator Sim such
that the following are computationally indistinguishable for any x ∈ Lk and witness
w for x:

• the view of V(1k, x) when interacting with P(1k, x, w);

• the output of Sim(1k, x).

♦

We do not allow for expected poly-time simulation since it is not needed to get efficient
protocols (since the zero-knowledge property was weakened).

3In fact, auxiliary-input zero-knowledge (mentioned earlier but not formally defined in these notes) is
always preserved under sequential composition; see [2, 3].

17-5

We now show that `-fold parallel repetition of the previously-shown protocol for graph
isomorphism is honest-verifier zero knowledge (for any polynomial `):

Sim(1k, (G1, G2))

choose random permutations ϕ′
1, . . . , ϕ

′
`

choose random b1, . . . , b` ← {1, 2}
for all i ∈ {1, . . . , `}: Hi = ϕ′

i(Gb1)
output (H1, . . . ,H`; b1, . . . , b`;ϕ

′
1
, . . . , ϕ′

`)

Note that the simulator’s job here is much easier — because we are only concerned with
simulating the view of an honest verifier, we may assume that the challenge bits b1, . . . , b`

are chosen uniformly and independently of the graphs H1, . . . ,H` sent in the first round.

References

[1] B. Barak and Y. Lindell. Strict Polynomial Time in Simulation and Extraction. STOC
2002. Full version available at http:
eprint.iacr.org.

[2] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University
Press, 2001.

[3] O. Goldreich. Tutorial on Zero Knowledge. Available at
http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

[4] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Computing 25(1): 169–192 (1996).

17-6

CMSC 858K — Advanced Topics in Cryptography April 6, 2004

Lecture 18

Lecturer: William Gasarch Scribe(s): Avinash J. Dalal, Julie Staub

1 Summary — What is Private Information Retrieval?

In this set of lecture notes we begin a brief discussion of Private Information Retrieval

(PIR). We begin by defining what PIR is about. We then present two PIR protocols, and
give simple proofs that these two protocols are indeed correct. Finally, we discuss some
generalizations of these basic schemes.

Let us begin by introducing the problem. Suppose we have a database DB = (x1, . . . , xn),
viewed as an n-bit string (i.e., the database has n entries, with each entry being a single
bit). Suppose further that a user wants to learn the ith bit of the database without leaking
to the database administrator1 any information about i (in an information-theoretic sense).

Informally, this is known as the PIR problem. Note that there does exist a solution:
simply send to the user the contents of the entire database. The user can discard all the
entries other than the one it is interested in, and the database clearly learns no information
about which entry this is. The communication complexity of this solution, however, is O(n).
The PIR problem asks: can we do better?

It is actually not too difficult to show that it is impossible to do better in the above
scenario if we require information-theoretic privacy for the user (i.e., even an all-powerful
database learns nothing about the bit i the user is interested in) [1]. Thus, we must relax
the scenario a bit to allow for more efficient solutions. One possibility that we explore here is
to assume that there are multiple (identical) copies of the database, and the administrators
of these databases cannot communicate with each other. We see that this allows for much
more efficient solutions (in terms of their communication complexity).

2 A First Approach

We discuss here an approach yielding schemes with communication complexity d
√

n when
there are 2d copies of the databases. The scheme will be illustrated first for the cases of
d = 2 and d = 3 and we then discuss its extension to the general case.

A 4-Database PIR Protocol. Suppose we have 4 identical copies of the data in databases
DB1, DB2, DB3, DB4. We show a PIR protocol with O(

√
n) communication complexity in

this setting. View the data (which is an n-bit string) as a
√

n × √
n array {xi,j}1≤i,j≤

√
n

(we assume for simplicity that n is a square). When the user wants to learn bit xi∗,j∗ at
position (i∗, j∗) he proceeds as follows:

1. Choose two random strings S, T each of length
√

n, and view these as subsets of
{1, . . . ,√n} in the natural way.

1From now on, “the database” will refer to the data itself as well as to the “administrator” of this data.

18-1

2. Let S′ = S ⊕ {i∗} and T ′ = T ⊕ {j∗}. Here, we let

S ⊕ {s} def
=

{

S ∪ {s} s 6∈ S

S \ {s} s ∈ S
.

We now have four subsets (equivalently,
√

n-bit strings) S, T, S ′, T ′.

3. Send:

• (S, T) to DB1;

• (S, T ′) to DB2;

• (S′, T) to DB3; and

• (S′, T ′) to DB4.

4. Database k receives a pair of subsets (Ŝk, T̂k), and sends to the user the single bit:

Xk
def
=

⊕

i∈Ŝk ,j∈T̂k

xi,j.

Here, of course, ⊕ represents the bit-wise xor operation.

5. Upon receiving the responses from the databases, the user computes

xi∗,j∗ = X1 ⊕ X2 ⊕ X3 ⊕ X4.

We first show that the above protocol is correct ; i.e., that the user correctly recovers the
bit of interest. To see this, note that:

X1 ⊕ X2 ⊕ X3 ⊕ X4 =
⊕

i∈S,j∈T

xi,j ⊕
⊕

i∈S′,j∈T

xi,j ⊕
⊕

i∈S,j∈T ′

xi,j ⊕
⊕

i∈S′,j∈T ′

xi,j.

Now, we claim that for each (i, j) 6= (i∗, j∗), the value xi,j appears an even number of times
in the above sum; in particular:

• If i 6= i∗ and j 6= j∗ then (i, j) is in either zero or all of the sets S ×T , S × T ′, S′ ×T ,
S′ × T ′.

• If i = i∗ but j 6= j∗ (or vice versa) then (i, j) is in either zero or exactly two of the
sets S × T , S × T ′, S′ × T , S′ × T ′.

Thus, all of these contributions cancel out. On the other hand, the value xi∗,j∗ appears an
odd number of times in the above sum, and hence X1 ⊕ X2 ⊕ X3 ⊕ X4 = xi∗,j∗, as desired.

We next argue that the above protocol is private; this is straightforward since each
database simply receives a pair of uniformly-distributed

√
n-bit strings. (It is easy to see

that S, T are uniformly distributed. For the case of, e.g., S ′, note that S ′⊕{i∗} is uniformly
distributed since S is uniformly distributed; the set S is acting as a “one-time pad” of sorts.)

An 8-Database PIR Protocol. As Dr. Gasarch would ask: “Can we do better?”. In
particular, what if we had more copies of the database? In fact, we can generalize the
above protocol to one with communication complexity O(3

√
n) when there are 8 databases

DB1, . . . , DB8 available. Here, we view the data as a 3
√

n× 3
√

n× 3
√

n cube {xi,j,k}1≤i,j,k≤ 3
√

n.
When the user wants to learn the bit xi∗,j∗,k∗ at position (i∗, j∗, k∗) he proceeds as follows:

18-2

1. Choose three random strings R,S, T each of length 3
√

n, and view these as subsets of
{1, . . . , 3

√
n} in the natural way.

2. Let R′ = R ⊕ {i∗}, S′ = S ⊕ {j∗}, and T ′ = T ⊕ {k∗}, where the notation is as
in the previous section. We now have eight subsets (equivalently, 3

√
n-bit strings)

R,R′, S, T, S′, T ′.

3. Send:
(R,S, T) to DB1 (R′, S, T) to DB5

(R,S, T ′) to DB2 (R′, S, T ′) to DB6

(R,S′, T) to DB3 (R′, S′, T) to DB7

(R,S′, T ′) to DB4 (R′, S′, T ′) to DB8

4. Database w receives subsets (R̂w, Ŝw, T̂w), and sends to the user the single bit:

Xw
def
=

⊕

i∈R̂w ,j∈Ŝw,k∈T̂w

xi,j,k.

5. Upon receiving the responses from the databases, the user xor’s them all together to
compute the desired bit.

Proofs of correctness and privacy are exactly as before, and are therefore omitted.

2.1 Extending the Scheme

It should be clear that the above approach generalizes to give a 2d-database scheme with
communication complexity d

√
n, for any integer d ≥ 1. The database is viewed as a d-

dimensional hypercube (d
√

n)
d
, and then the approach above is applied. For details, see [1].

3 Improving the Previous Approach

Here, we show how the last scheme can be improved: we show a scheme with the same
communication complexity but using only two databases. The basic intuition leading to
this improvement is to balance the communication between the user and the databases.
In the previous scheme, the user sends O(3

√
n) bits to each database, while each database

responds with a single bit. By shifting more communication onto the databases, we are able
to reduce the number of databases needed.

Recall in the previous scheme (of Section 2), the user chooses initial random sets R,S, T

and then sends a triple of sets (based on these sets as well as the index of interest) to each
of the eight databases. We show how the information sent by these eight databases can in
fact be sent by two databases. . . but still without leaking any information to either of these
databases about the index the user is interested in.

Let R,S, T,R′, S′, T ′ be as in Section 2. The user will send R,S, T to the first database,
and R′, S′, T ′ to the second. (Note that these leak no information to either database about
the index the user is interested in.) We would like the databases to now “simulate” the
actions of the eight databases in the original scheme. Clearly, it is easy for the first database

18-3

to simulate DB1 from before and equally easy for the second database to simulate DB8.
What about the other databases? Consider how the first database might simulate the
actions of DB2. To do this, it seemingly needs to know T ′; on the other hand, if it knew T ′

then (using T) it would be able to determine k∗ and this would leak information about the
user’s query. Instead, what it will do is try all possible values for T ′, and simulate DB2 for
each possibility. Since T and T ′ differ in only one position, there are only 3

√
n possibilities

for T ′. So, simulating the response of DB2 for each of these possibilities only requires an
additional 3

√
n bits (one bit per possibility).

In exactly this way, the first database can simulate the responses of DB3 and DB4. The
total communication it sends to the user is therefore 3 3

√
n + 1 bits.

The second database simulates DB5, DB6, and DB7 in a similar manner (and acts
exactly as DB8 would). So it also sends 3 3

√
n + 1 bits to the user. At this point, it is clear

that the user can recover the desired answer (it just picks out the appropriate bits from
the two responses, and then xor’s them together as in the previous scheme), and the total
communication complexity is O(3

√
n) bits.

3.1 Extending this Approach for More Databases

Let us try to generalize the approach of the previous section. Abstractly, we can view the
eight triples of sets that the user sends to the eight databases in the original scheme as binary
strings of length three: the tuple (R,S, T) corresponds to (0, 0, 0), (R,S, T ′) corresponds
to (0, 0, 1), etc. In the improved scheme, we send the “sets” (0, 0, 0) to the first database
and let it simulate (0, 0, 1), (0, 1, 0), and (1, 0, 0). We also send the “sets” (1, 1, 1) to the
second database and let it simulate (1, 1, 0), (1, 0, 1), and (0, 1, 1). The key point is that
each database simulates queries of Hamming distance 1 from the query it receives. This is
what allows the total communication complexity to remain O(3

√
n).

Consider the 16-database, O(4
√

n)-bit PIR protocol which is the extension of the schemes
in Section 2. Here, the user sends “queries” in the form of 4-bit strings (i.e., the “query”
(0, 0, 0, 0) represents four random subsets (R,S, T,W) of {1, . . . , 4

√
n}). If we try to apply

the improvement above, we see that we cannot do it using only two databases: if we send
(0, 0, 0, 0) to the first database and ask it to simulate query (1, 1, 0, 0), for example, then
it will have to try 4

√
n × 4

√
n different possibilities (namely, 4

√
n possibilities for each of R′

and S′) and the communication complexity will be too high. A little thought shows that in
order to implement this improvement we need four databases: the user will send (0, 0, 0, 0)
to the first, (1, 1, 0, 0) to the second, (0, 0, 1, 1) to the third, and (1, 1, 1, 1) to the fourth and
now every 4-bit string in within Hamming distance 1 of at least one of these representatives.

For further information, see [1] or the extensive PIR references available at [2].

References

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval.
Journal of the ACM 45(6): 965–981, 1998.

[2] W. Gasarch. http://www.cs.umd.edu/~gasarch/pir

18-4

CMSC 858K — Advanced Topics in Cryptography April 8, 2004

Lecture 19

Lecturer: Jonathan Katz Scribe(s):
Nikolai Yakovenko
Jeffrey Blank

1 Introduction and Preliminaries

In a previous lecture, we showed a zero-knowledge (ZK) proof system for the language of
graph isomorphism. Our goal here is to show a ZK proof system for any language inNP . To
do so, it suffices to show a ZK proof system Π for any NP-complete language L (note that
graph isomorphism is not believed to be NP-complete); given such a Π and any L ′ ∈ NP ,
we then obtain a ZK proof for L′ by (1) reducing the common input x′ (which is supposedly
in L′) to a string x such that x′ ∈ L′ ⇔ x ∈ L; and then (2) running the original proof
system Π on common input x. (Actually, if we want this to work for a poly-time prover
then we need the reduction from L′ to L to also preserve witnesses; i.e., there should be
poly-time computable functions f1, f2 such that x′ ∈ L′ ⇔ f1(x

′) ∈ L and if w′ is a witness
for x′ ∈ L′ then f2(w

′) should be a witness that f1(x
′) ∈ L.)

In this lecture, we show a ZK proof system for the language of 3-colorability, which is
NP-complete. Before doing so, we will first define the notion of a commitment scheme.

1.1 Commitment Schemes

Informally, a commitment scheme provides a way for a sender to commit to a value without
revealing it to a receiver. At some later point, however, the sender can reveal his committed
value and the receiver will be convinced that the sender did not “change his mind”. A good
analogy is the following commitment scheme which works when the parties are sitting at
a table together: the sender writes his value on a piece of paper, places it in an envelope,
seals the envelope, and places the envelope on the table. Assuming normal paper and ink,
the sender certainly cannot change the value inside the envelope (i.e., he is committed to
that value) yet the receiver cannot learn the value while the envelope remains unopened.
Unfortunately, this only works when the parties are in the room together, but does not lead
to a protocol that can be run over the Internet!

We refer to the properties sketched above as hiding and binding : The hiding property
refers to the receiver’s inability to learn the value after the sender has committed, but before
he has revealed his commitment. The binding property refers to the sender’s inability to
change the value after committing to it.

If we try to formally define these notions, it turns out that there are two different
“flavors” of commitment schemes one can consider: the first ensures that the binding
property holds even for an all-powerful sender, but the hiding property “only” holds for
a computationally-bounded1 receiver. (We may also say that binding holds information-

1While one choice might be to equate “computationally-bounded” with ppt, for the application to ZK
proofs we will need hiding to hold with respect to polynomial-size circuits (i.e., we need a non-uniform
hardness assumption).

19-1

theoretically, while hiding holds only computationally.) Commitment schemes of this sort
are called standard. The second type of commitment satisfies the hiding property even for
an all-powerful receiver, but now the binding property only holds for a computationally-
bounded sender. (I.e., this scheme achieves information-theoretic hiding, but only compu-
tational binding.) Such commitment schemes are termed perfect.2 The scheme one uses will
depend on the application, as we will see.

For now, we define only a standard commitment scheme. In general, a commitment
scheme may be interactive, but for simplicity we give a definition only for the case of
non-interactive commitment. Here, the sender outputs a pair (com, dec) consisting of a
commitment and a decommitment: sending com to the receiver constitutes the commitment
phase and sending dec to the receiver constitutes the decommitment phase.

Definition 1 A standard commitment scheme consists of a pair of ppt algorithms (S,R)
satisfying the following:

Correctness For all k and all b ∈ {0, 1}:

Pr[(com, dec)← S(1k, b) : R(1k, com, dec) = b] = 1.

Binding The following is negligible even for an all-powerful S ∗:

Pr[(com, dec, dec
′) := S∗(1k) : R(1k, com, dec) = 0 ∧R(1k, com, dec

′) = 1].

Hiding The following is negligible for any family {R∗

k} of polynomial-size circuits (see
footnote 1):

∣

∣

∣

∣

Pr[b← {0, 1}; (com, dec)← S(1k, b) : R∗

k(com) = b]−
1

2

∣

∣

∣

∣

.

♦

We remark that it is easy to extend the above definition to string commitment rather
than just bit commitment. Furthermore, it is easy to construct a string commitment scheme
from any bit commitment scheme: just commit to the bits of the string one-by-one. Here,
the hiding definition may be more easily thought of in terms of an “indistinguishability-
type” game as in the case of encryption: an adversary submits two strings m0,m1 to
a “commitment oracle” which returns a commitment of mb for random b; the adversary
succeeds if it guesses the value of b, and we say the commitment scheme is secure if every
poly-size family of circuits succeeds with probability negligibly close to half.

We do not pursue constructions of commitment schemes here, and instead defer that to
another lecture. Here, we will instead be more interested in using a commitment scheme
(as a black box) to construct a ZK proof system.

2In case you are wondering: it is not too difficult to show the impossibility of simultaneously achieving
information-theoretic binding and hiding. At the other extreme, schemes achieving both computational
binding and hiding may be suitable for some applications, but since we can (for the most part) achieve the
stronger notions of security anyway, this case is not so interesting.

19-2

2 A ZK Proof System for 3-Colorability

The language of 3-colorability is the set of graphs which can be “3-colored”; i.e., graphs for
which the colors “read”, “blue”, and “green” can be assigned to its vertices such that no
two adjacent vertices (vertices sharing an edge) have the same color. Formally, a coloring
of a graph G can be viewed as function φ from the vertices of G to the set {r, b, g} such
that if (u, v) is an edge in G, then φ(u) 6= φ(v). Deciding 3-colorability is known to be an
NP-complete problem.

We now show a ZK proof for 3-colorability: At the beginning of the protocol, both the
prover and verifier know the same graph G with n vertices, and the prover also knows a
3-coloring φ for this graph (we let φi denote φ(i); i.e., the color assigned to vertex i).

• First, the prover chooses a random permutation ϕ over the set {r, b, g}. He then
commits to the (permuted) coloring vertex-by-vertex, and sends the n commitments

ϕ(φ1) · · · ϕ(φn) .

• The verifier chooses a random edge (i, j) in G, and sends (i, j) to the prover.

• The prover sends decommitments to the ith and jth commitments that it sent in the
first round.

• The verifier recovers the decommitted values, denoted ϕi and ϕj . The verifier accepts
iff ϕi, ϕj ∈ {r, b, g} and ϕi 6= ϕj .

Note that the proof system satisfies completeness, since an honest prover using a valid
coloring will always cause the verifier to accept. Furthermore, (weak) soundness holds if the
commitment scheme is binding. To see this, assume for a moment that the commitments
are “perfect” (i.e., sealed envelopes) and let P ∗ be a cheating prover with G a graph that is
not 3-colorable. Then after the first round, P ∗ is committed to some assignment of vertices
to colors (we may assume that if a particular commitment is invalid in any way, then we
arbitrarily assign it the color “red”). Since the graph is not 3-colorable, there must then
be at least one edge (u, v) for which u and v are assigned the same color. So if the verifier
chooses this edge, he will reject the proof. The probability that the verifier chooses such
an edge is (at least) 1/|E| ≥ 1/n2, where |E| is the number of edges in G (it is at least
this probability because there might be more than one edge whose vertices are not colored
correctly). So, the prover fails to convince the verifier with probability at least 1/n2, which
is inverse polynomial (in the size of the graph). Of course, we need to also take into account
the fact that these are not “perfect” commitments; however, the probability that the prover
can open any of these commitments in more than one way is negligible (by the binding
property) so this decreases the probability that the verifier will accept by only a negligible
probability.

As usual, repeating the protocol sufficiently-many (but polynomially-many) times (se-
quentially if we want to preserve the ZK property3) yields a proof system with negligible
soundness error.

In the next two sections, we show that this proof system is zero knowledge.

3We rely here on the fact that the above proof system satisfies the stronger definition of auxiliary-input

zero knowledge; see Lecture 17 and [1].

19-3

2.1 Simulation for an Honest Verifier

First, we informally discuss why the above protocol is honest-verifier zero knowledge. (We
do not give a formal proof, since one will follow anyway from the stronger result we show
in the following section.) Imagine the following simulator, which receives only the graph G
(but no coloring); as usual, the simulator “guesses in advance” the challenge of the verifier:

• Choose a random edge (i, j) in G.

• Choose ϕi at random from {r, b, g} and ϕj at random from {r, b, g} \ {ϕi}. For all
k ∈ {1, . . . , n}, k 6= i, j, set ϕk = r. Generate commitments ϕ1 · · · ϕn to these n
values.

• Output the transcript ϕ1 · · · ϕn ; (i, j); ϕi, ϕj . (Actually, the last round should

include decommitments to ϕi, ϕj .)

Now, note that the “only” difference between the distribution on transcripts output by
the simulator, and the distribution on transcripts resulting from a real execution of the
protocol are that, in the former, all commitments other than ϕi, ϕj are to “r” while, in the
latter, all the commitments are to some valid 3-coloring. However, by the hiding property
of the commitment scheme, these two distributions are computationally indistinguishable.4

2.2 Simulation for a Dishonest Verifier

We now show, more formally, a simulator for an arbitrary ppt verifier V ∗.

Sim(1k, G)

fix random tape ω for V ∗

for i = 1 to |E|2:
choose random edge (u, v)
generate vector of commitments com as in previous section
run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output transcript as in previous section

if all previous iterations have failed, output ⊥

We now want to claim that, for all G,φ, the output distribution defined by Sim is
computationally indistinguishable from the distribution over real executions of the protocol.
The intuition is exactly as in the case of the ZK proof of graph isomorphism: we want to
claim that Sim outputs ⊥ with only negligible probability, and that conditioned on not
outputting ⊥ the transcripts looks “the same”. However, two differences arise here which
did not arise previously:

1. First, it is not immediately clear that Sim outputs ⊥ with only negligible probability.
To argue this, we would like to claim that in any iteration of the loop the probability
that (u∗, v∗) = (u, v) is 1/|E| (similar to the case of graph isomorphism). In the

4We remark that this is in contrast to the ZK proof system for graph isomorphism, where the simulated
transcripts were perfectly indistinguishable from real transcripts in the case of HVZK, and statistically

indistinguishable from real transcripts in the case of ZK.

19-4

case of graph isomorphism, however, the view of V ∗ was independent of the challenge
guessed by the simulator; here, this is no longer true since the vector of commitments
given to V ∗ does reveal the guess of Sim (in an information-theoretic sense). On the
other hand, since V ∗ runs in polynomial-time and the commitments are hiding we can
show that this does not make “too much difference”; this requires formal proof.

2. Second, in the case of graph isomorphism the transcripts were identically distributed
(conditioned on not outputting ⊥); here, though, the transcripts will (only) be com-
putationally indistinguishable.

We now give a (sketch of a) formal proof which will (we hope!) provide the interested
reader with all the necessary elements to construct a full proof. (The reader is also invited to
see [1].) First, consider the following modified “simulation” which is not really a simulation
at all since it will use the coloring φ used by the real prover.

Sim
′(1k, G, φ)

fix random tape ω for V ∗

for i = 1 to |E|2:
choose random edge (u, v)
Using φ, generate a vector of commitments com exactly like the honest prover
run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output transcript as in previous section

if all previous iterations have failed, output ⊥

We claim that (for all G,φ) the output distribution generated by Sim
′ is statistically-

close to the distribution of real executions of the protocol. The argument here is exactly as
in the case of graph isomorphism: note that now the “guess” of the simulator is information-
theoretically hidden from V ∗ (since the vector of commitments is for a valid 3-coloring, so
there is no way to tell which edge was guessed by Sim

′) and so the probability of outputting
⊥ is negligible; furthermore, conditioned on not outputting ⊥ the distributions are identical.
(We stress that the above does not constitute a valid simulation, however, since Sim

′ is given
φ. Instead, it is just a “mental experiment”.)

We next claim that (for all G,φ) the output distribution generated by Sim
′ is compu-

tationally indistinguishable from the output distribution generated by Sim. (By a hybrid
argument, this shows that the distribution generated by Sim is computationally indistin-
guishable from the real distribution, and completes the proof.) To see this, assume the
contrary. Then there is a poly-time distinguisher D∗ that can distinguish between the two
distributions with probability that is not negligible. But then we can create a poly-time dis-
tinguisher5 D that violates the hiding property of the commitment scheme as follows (we
use the “indistinguishability-based” characterization of the hiding property, as discussed

5In fact, the distinguisher we construct will be a poly-size circuit (and this is why we need to commitment
scheme to satisfy a non-uniform definition of security) because we will have to incorporate the graph G and
the coloring φ. Such subtleties are glossed over in this write-up.

19-5

earlier):

D(1k, G, φ)

fix random tape ω for V ∗

for i = 1 to |E|2:
1. choose random edge (u, v)
2. Choose random, different colors ϕu for u and ϕv for v and commit to these
3. for all other vertices, generate two vectors of length n− 2:

one in which every vertex (i.e., other than u, v) is colored red,
and one in which the vertices are colored using a random permutation ϕ of φ
subject to ϕ(u) = ϕu and ϕ(v) = ϕv

3. submit these messages to the commitment oracle and get back
a vector of n− 2 commitments
let com represent these commitments along with
the commitments to ϕu, ϕv (all in the correct order)

4. run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output 〈com; (u, v);ϕu, ϕv〉 as the transcript

if all previous iterations have failed, output ⊥
run D∗ on the resulting transcript, and output whatever D∗ outputs

The proof concludes by making the following observations: (1) if the commitments
returned by the “commitment oracle” are of the first type (where vertices other than u, v
are colored red) then the transcript given to D∗ is distributed exactly according to the
transcripts output by Sim; (2) if the commitments returned by the “commitment oracle” are
of the second type (where they form a commitment to a valid 3-coloring) then the transcript
given to D∗ is distributed exactly according to the transcripts output by Sim

′. Thus, (3) if
D∗ can distinguish between these, then D can distinguish what kind of commitments are
being given to it by its oracle. Since D runs in polynomial time, this is a contradiction.

References

[1] O. Goldreich. Foundation of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

19-6

CMSC 858K — Advanced Topics in Cryptography April 13, 2004

Lecture 20

Lecturer: Bill Gasarch Scribe(s):
Rengarajan Aravamudhan
Julie Staub
Nan Wang

1 Last Lecture Summary

In lecture 18, we showed a technique that can be used to achieve k-database PIR with
communication complexity O

(

n1/(log k+log log k)
)

(we did not prove this bound in class, but
the method we showed yields this bound). Today, we show an improved approach due to
Ambainis [1] that achieves k-database PIR with O(n1/2k−1) communication complexity.

2 A 3-Database PIR Protocol with O(n1/5) Communication

We start by illustrating the technique for the case of 3 databases, using the notation as in
lecture 18 (in fact, this scheme builds on the previous schemes, and we assume the reader
is familiar with lecture 18). Here, we model the n-bit database as an n1/5 × n1/5 × n1/5 ×
n1/5 × n1/5 table {xi1,i2,i3,i4,i5}, with the desired bit indexed as (i∗1, i

∗

2, i
∗

3, i
∗

4, i
∗

5). The three
databases are DB1, DB2, and DB3. We first discuss the intuition, and then describe the
actual protocol.

As in the previous schemes we have seen, the user begins by choosing five random sets
S0

1 , S0
2 , S0

3 , S0
4 , S0

5 ⊆ {1, 2, ..., n1/5}, and computing S1
1 = S0

1 ⊕{i∗1}, . . . , S1
5 = S5⊕{i∗5}. The

user will send S0
1 , S0

2 , S0
3 , S0

4 , S0
5 to DB1 and DB2, and send S1

1 , S1
2 , S1

3 , S1
4 , S1

5 to DB3. Let

Xb1b2b3b4b5
def
=

⊕

i1∈S
b1

1

⊕

i2∈S
b2

2

⊕

i3∈S
b3

3

⊕

i4∈S
b4

4

⊕

i5∈S
b5

5

xi1,i2,i3,i4,i5 .

Recall (from the schemes we have seen in lecture 18) that the user would like to obtain all
32 of the values X00000, . . . , X11111, and then xor these together to recover the desired bit.
Now, DB1 (and DB2) can easily compute X00000, while DB3 can easily compute X11111.
Furthermore, since the user is already sending O(n1/5) communication to the databases
we may as well let the databases send this much communication back. We saw (in the
improved scheme from lecture 18) that this can help because we may then have, for ex-
ample, DB3 compute X11110 for all n1/5 possible values of S0

5 , and then send these n1/5

bits back to the user (who selects and uses the one he is interested in). Adopting this
approach, we see that DB3 can send back (enough information for the user to compute)
X11110, X11101, X11011, X10111, and X01111. Similarly, either of DB1 or DB2 can send back
(enough information for the user to compute) X00001, X00010, X00100, X01000, and X10000.
This can be all done while maintaining communication complexity O(n1/5).

Unfortunately, we are not yet done because the user will still be missing 20 of the values
he needs to recover the desired bit. Note that we cannot extend the above approach in

20-1

the trivial way to allow the user to recover the necessary values without exceeding O(n1/5)
communication complexity: if we have DB1 send back X11000 for all possible values of S1

1

and S1
2 , this will require DB1 to send n2/5 bits.

Instead, what we do is to apply a 2-database PIR protocol as a subroutine. Namely,
both DB1 and DB2 will compute each of the remaining values for all possibilities of each
of the unknown sets. (For example, DB1 and DB2 will compute X11100 for all possible
values of S1

1 , S1
2 , and S1

3 .) This results in each of these databases holding the same copy
of 20 strings, each of length at most n3/5. The key point is that the user only needs one
bit from each of these strings (i.e., the bit corresponding to the actual value of S 1

1 , . . . , S1
5)

and this bit is known by the user in step 1. Since DB1 and DB2 hold identical copies of
these strings, they and the user can use multiple invocations of a 2-database PIR protocol
with communication complexity O(N 1/3) (we saw such a scheme last time) to allow the
user to obtain the desired bits from each of these strings. Since N ≤ n3/5 in our case, this
will require communication complexity O(n1/5) meaning that the overall communication
complexity of the entire protocol remains O(n1/5).

Using this intuition, we obtain the following protocol:

1. The user begins by choosing five random sets S0
1 , S0

2 , S0
3 , S0

4 , S0
5 ⊆ {1, 2, ..., n1/5}, and

computing S1
1 = S0

1 ⊕ {i∗1}, . . . , S1
5 = S5 ⊕ {i∗5}. The user sends S0

1 , S0
2 , S0

3 , S0
4 , S0

5 to
DB1 and DB2, and sends S1

1 , S1
2 , S1

3 , S1
4 , S1

5 to DB3.

2. The user also sends to DB1 and DB2 20 queries for any 2-database PIR protocol with
O(n1/3) comm. complexity. These queries are determined based on the sets that the
user generated in the previous step.

3. DB1 and DB3 send back X00000 and X11111, respectively. Also, DB1 sends back
X00001, . . . , X10000 for all n1/5 possible values for each of S1

1 , . . . , S1
5 . Similarly, DB3

sends X11110, . . . , X01111 for all n1/5 possible values for each of S0
1 , . . . , S0

5 .

4. (We use X11100 as an example, but exactly the same computation is carried out for each
of the remaining values.) DB1 and DB2 both generate X11100 for all n3/5 possibilities
of S1

1 , S1
2 , S1

3 . This results in each of these databases holding identical copies of a
string of length n3/5. Using the appropriate query that was sent by the user, each
database computes a response using the underlying 2-database PIR protocol.

5. The user obtains X00000 and X11111 immediately, and can easily select the values for
X00001, . . . , X10000 and X11110, . . . , X01111 from the data sent back by the databases.
For the remaining values, the user runs the underlying PIR protocol using the appro-
priate replies sent back by DB1 and DB2 to recover all remaining values. The desired
bit of the original data is recovered as:

1
⊕

b1=0

1
⊕

b2=0

1
⊕

b3=0

1
⊕

b4=0

1
⊕

b5=0

Xb1b2b3b4b5 .

3 Extending the Scheme for k Databases

We generalize the scheme of the previous section and prove the following theorem:

20-2

Theorem 1 For all k ≥ 2, there exists a k-database PIR scheme with O(n1/2k−1) commu-
nication complexity.

Proof We will prove this by induction. For k = 2, 3, we have already shown that the
theorem holds. So, assume the theorem is true for k−1, and there exists a (k−1)-database
PIR scheme with O(n1/2k−3) communication complexity. We show how to construct a
k-database scheme as claimed by the theorem.

We view the n-bit database as an n1/2k−1 × n1/2k−1 × · · · × n1/2k−1 array with the
desired bit indexed as (i∗1, i

∗

2, . . . , i
∗

2k−1). We use the notation from the previous section.
The protocol is defined as follows:

1. The user chooses 2k−1 random sets S0
1 , . . . , S0

2k−1 ⊆ {1, . . . , n1/(2k−1)}, and computes
S1

` = S0
` ⊕ {i∗`}. The user sends S0

1 , . . . , S0
2k−1 to each of DB1, . . . , DBk−1 and sends

S1
1 , . . . , S1

2k−1 to DBk.

2. DB1 will compute and send X02k−1 as well as the n1/(2k−1) possibilities for each
of {X0i102k−2−i}2k−2

i=0 . Similarly, DBk will compute and send X12k−1 as well as the
n1/(2k−1) possibilities for each of {X1i012k−2−i}2k−2

i=0 .

3. In addition, each of the databases DB1, . . . , DBk−1 will compute all possible values
for Xw for all (2k−1)-bit strings w having at least 2 and at most 2k−3 ones. Instead
of sending these directly to the user, the databases will execute the (k − 1)-database
PIR protocol (that exists by assumption) on these strings, using queries sent by the
user in the first stage.

The total communication complexity can be computed as follows:

• Sending the sets from the user to all k databases requires k · (2k − 1) · n1/(2k−1) bits.

• Steps 2 and 3 each require only (2k − 2) · n1/(2k−1) bits to be sent by databases DB1

and DBk.

• Step 4 involves running a (k − 1)-database PIR protocol on fewer than 22k−1 strings,
each of length at most n(2k−3)/(2k−1). Since the underlying PIR protocol has commu-
nication complexity O(N 1/(2k−3)), this requires total communication (including the
communication from the user in the first round) O(n1/(2k−1)).

The total communication complexity is therefore O(n1/(2k−1)), as desired.

When including the dependence on k, the communication complexity is O(2k2

n1/(2k−1)).
This is quite high even for moderate values of k! However, k-database PIR schemes with
communication complexity O(k3n1/2k−1) and O(n(log log k)/(k log k)) (ignoring the constant
which depends on k) are known. See http://www.cs.umd.edu/~gasarch/pir.

References

[1] A. Ambainis. Upper Bound on the Communication Complexity of Private Information
Retrieval. ICALP, 1997.

20-3

CMSC 858K — Advanced Topics in Cryptography April 15, 2004

Lecture 21

Lecturer: Jonathan Katz Scribe(s):
Omer Horvitz Zhongchao Yu
John Trafton Akhil Gupta

1 Introduction

In a previous lecture, we saw how to construct a three-round zero-knowledge (ZK) proof
system for graph 3-colorability with soundness error 1 − 1/ |E| on a common input G =
(V,E). The soundness error can be made negligible, while maintaining zero knowledge, by
repeating the protocol |E| · ω(log k) times sequentially (where k is the security parameter);
unfortunately, this increases the round complexity of the protocol tremendously and in
particular does not result in a constant-round protocol. On the other hand, repeating the
protocol many times in parallel is not known to result in a zero-knowledge protocol (i.e., we
do not know how to show a simulator for the resulting protocol). The resulting protocol,
however, can be shown to satisfy honest-verifier zero knowledge, a weaker variant of zero
knowledge.

In this lecture, we consider another weakening of the zero-knowledge property known
as witness indistinguishability [1]. This notion is useful in its own right, and also leads to
constructions of constant-round ZK proof systems (with negligible soundness error) as we
will see in a later lecture.

2 Witness Indistinguishability

In general, an NP statement may have multiple witnesses. For example, a Hamiltonian
graph may have multiple Hamiltonian cycles; a 3-colorable graph may have multiple (non-
isomorphic) 3-colorings; etc. We are interested in proof systems (for languages in NP)
that do not leak information about which witness the prover is using, even to a malicious
verifier. In the following, we let 〈A(y), B(z)〉 (x) denote the view (i.e., inputs, internal coin
tosses, incoming messages) of B when interacting with A on common input x, when A has
auxiliary input y and B has auxiliary input z.

Definition 1 Let L ∈ NP and let (P,V) be an interactive proof system for L with perfect
completeness. We say that (P,V) is witness-indistinguishable (WI) if for every ppt algo-
rithm V∗ and every two sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x and w2
x are both

witnesses for x, the following ensembles are computationally indistinguishable:

1.
{〈

P(w1
x),V∗(z)

〉

(x)
}

x∈L,z∈{0,1}∗

2.
{〈

P(w2
x),V∗(z)

〉

(x)
}

x∈L,z∈{0,1}∗
.

(Note: when the security parameter is not written explicitly, we simply take |x| = k.) In
particular, we may have z = (w1

x, w2
x). ♦

21-1

Remark WI is defined with respect to auxiliary-input verifiers (where the auxiliary input
can include the witnesses which the prover might use). Although we have not done so before,
zero knowledge can also be defined with respect to auxiliary-input verifiers (this is called
auxiliary-input zero knowledge). In this lecture, when referring to a ZK proof system we
will mean auxiliary-input zero knowledge by default.

Witness indistinguishability is clearly a weaker notion than zero-knowledge, and in par-
ticular there exists protocols which are trivially WI and definitely not zero-knowledge.
For example, whenever there is only a single witness for a particular statement (e.g., a
single Hamiltonian cycle in a graph) then a protocol in which the prover sends the wit-
ness to the verifier is WI but not (in general) ZK! To flesh this example out a bit, as-
sume the existence of a length-preserving one-way permutation f and define the language

L0
def
= {y | the first bit of f−1(y) is 0}. (Note that every y ∈ L0 has the unique witness

x = f−1(y).) An interactive proof in which the prover sends f−1(y) on common input y is
witness indistinguishable (trivially) but not zero knowledge (assuming f is indeed one-way).

On the other hand, one can show that zero knowledge is strictly stronger than witness
indistinguishability:

Theorem 1 (ZK implies WI) If an interactive proof system (P,V) for a language L is
zero-knowledge, then it is also witness indistinguishable.

Proof (Sketch) Let V∗ be a ppt algorithm, and let Sim be the simulator guaranteed by
the zero-knowledge property of (P,V). Then for any x ∈ L and any witnesses w1, w2 for x,
we have that:

• {Sim(x, z)}x∈L,z∈{0,1}∗
c
≈ {〈P(w1),V

∗(z)〉 (x)}x∈L,z∈{0,1}∗

and

• {Sim(x, z)}x∈L,z∈{0,1}∗
c
≈ {〈P(w2),V

∗(z)〉 (x)}x∈L,z∈{0,1}∗ .

By the transitivity of computational indistinguishability, it follows that:

{〈P(w1),V
∗(z)〉 (x)}x∈L,z∈{0,1}∗

c
≈ {〈P(w2),V

∗(z)〉 (x)}x∈L,z∈{0,1}∗ ,

as required.

Next, we show that — in contrast to zero knowledge — witness indistinguishability is
preserved under parallel composition (i.e., parallel repetition of the protocol). Before doing
so, we first formally define parallel composition and, in the process, establish some notation.

Definition 2 Let (P,V) be an interactive proof system for a language L, and let ` =

`(k). We define the `-fold parallel composition of (P,V), denoted (P
‖
` ,V

‖
`), as the protocol

obtained by running ` independent executions of (P,V) in parallel. Namely:

• P
‖
` , on input 1k, x, w with x ∈ L and w a witness for x, generates ` = `(k) independent

random tapes ω1, . . . , ω`. It then runs P(1k , x, w;ω1), . . . ,P(1k , x, w;ω`) to generate

~m1
def
= m1

1, . . . ,m
`
1. It sends ~m1 to the verifier as its first message.

21-2

• V
‖
` , on (common) input x, chooses ` independent random tapes ω ′

1, . . . , ω
′
`. After

receiving message ~m1 = m1
1, . . . ,m

`
1 from the prover, it runs V(1k, x,m1

1;ω
′
1), . . . ,

V(1k, x,m`
1;ω

′
`) to generate ~m2

def
= m1

2, . . . ,m
`
2. It sends ~m2 to the prover.

• The execution continues in this way. It is stressed that each of the ` executions is
“oblivious” to the other ` − 1 executions, and all random coins are chosen indepen-
dently.

• At the end of the protocol, V
‖
`

accepts only if all ` invocations of V have accepted.

♦

It is not difficult to see that perfect completeness is preserved under parallel composition,
and that if (P,V) has soundness error ε(k) (against an all-powerful prover — i.e., this is a

proof system) then (P
‖
`
,V

‖
`
) has soundness error ε(k)`(k).1 We have also mentioned already

that zero knowledge is not necessarily preserved under parallel composition. However:

Theorem 2 (WI is preserved under parallel composition) For any polynomial `(·),

if (P,V) is witness indistinguishable then so is (P
‖
`
,V

‖
`
).

Proof At its core, the proof is via a hybrid argument but some things are slightly more
subtle here because we are dealing with an interactive process (also, contrary to intuition(?),
ZK is not preserved under parallel composition and so we must check the details and not
rely on our intuition).

We prove the theorem for ` = 2 (and write P‖ instead of P
‖
2); the proof extends for

any polynomial `. Assume to the contrary that there exists a ppt algorithm V ∗, an infinite
sequence {(xi, w

1
i , w

2
i , zi}i∈ � , and a ppt distinguisher D such that the following is not

negligible:
∣

∣

∣
Pr

[

view←
〈

P‖(w1
k),V

∗(zk)
〉

(xk) : D(1k, view) = 1
]

− Pr
[

view←
〈

P‖(w2
k),V

∗(zk)
〉

(xk) : D(1k, view) = 1
]
∣

∣

∣
.

Let P̂‖(w,w′) denote a prover who runs two parallel executions of P but uses witness
w in the first execution and w′ in the second (we assume these are both witnesses for the
same x). Using this notation, P̂‖(w,w) = P‖(w). Thus, a standard hybrid argument shows
that at least one of

∣

∣

∣
Pr

[

view←
〈

P̂‖(w1
k, w

1
k),V∗(zk)

〉

(xk) : D(1k, view) = 1
]

− Pr
[

view←
〈

P̂‖(w1
k, w

2
k),V

∗(zk)
〉

(xk) : D(1k, view) = 1
]
∣

∣

∣

or
∣

∣

∣
Pr

[

view←
〈

P̂‖(w1
k, w

2
k),V∗(zk)

〉

(xk) : D(1k, view) = 1
]

− Pr
[

view←
〈

P̂‖(w2
k, w

2
k),V

∗(zk)
〉

(xk) : D(1k, view) = 1
]
∣

∣

∣

1Interestingly, this is not necessarily true when soundness is defined for computationally-bounded provers
(i.e., an argument system, which will be defined in a later lecture).

21-3

is not negligible. Without loss of generality, assume it is the former. We show that this
contradicts the witness indistinguishability of the original proof system (P,V).

Construct the following ppt verifier V∗∗ who gets auxiliary input (zk, w
1
k) and interacts

with P:

V∗∗(1k, x, zk, w
1
k)

run V∗(1k, x, zk) as follows:
for the second of the two parallel executions of P that V ∗ expects to see
forward the appropriate messages to and from the external prover P

for the first of the two parallel executions
run P internally, using the witness w1

k

when done, output the view of V∗ (which is easy to reconstruct)

Note that
〈

P(w1
k),V∗∗(zk, w

1
k)

〉

(xk) ≡
〈

P̂‖(w1
k, w

1
k),V

∗(zk)
〉

(xk)

(that is, the distributions are identical), and

〈

P(w2
k),V∗∗(zk, w

1
k)

〉

(xk) ≡
〈

P̂‖(w1
k, w

2
k),V∗(zk)

〉

(xk).

But then D distinguishes between the two distributions on the left-hand sides of the equa-
tions above, contradicting the witness indistinguishability of (P,V).

Recall the three-round, zero-knowledge protocol for graph 3-colorability from a previous
lecture. Theorem 1 implies that this protocol is witness indistinguishable, and Theorem 2
implies that its witness indistinguishability is preserved under parallel composition. We
thus obtain:

Corollary 3 There exists a three-round, witness indistinguishable proof system with negli-
gible soundness error for the NP -complete language graph 3-colorability, and hence for any
language in NP .

We will see applications of witness indistinguishability, both on its own and also as a
tool to construct zero-knowledge protocols, in the upcoming lectures.

3 Commitment Schemes

As mentioned previously, two “flavors” of commitment schemes can be considered:

• Perfect (or computationally binding) commitments, protecting against all-powerful
receivers and polynomial-time senders.

• Standard (or computationally hiding) commitments, protecting against polynomial-
time receivers and all-powerful senders.

In the basic, three-round proof system for graph 3-colorability, we need soundness to
hold even for all-powerful provers. Thus, we need the prover to use a standard commitment
scheme to commit to the coloring of the graph in the first round.

21-4

We now show an easy construction of a standard commitment scheme: Let (Gen, E ,D)
be a public-key encryption scheme with perfect decryption (i.e., a decryption error never
occurs). Consider the following, two-phase protocol between a sender S on input b ∈ {0, 1}
and a receiver R. In the first phase, S runs (pk, sk) ← Gen(1k; rGen), computes c ←
Epk(b; rE) and sends (pk, c) to R. In the second phase, S sends (b, rGen, rE) to the receiver.

Claim 4 The above protocol constitutes a standard commitment scheme.

Proof (Sketch) Hiding follows directly from the hiding property of the encryption scheme
(if the sender is honest, then rGen and rE are chosen uniformly at random, and hence b is
hidden; a formal proof is left to the reader). Perfect binding follows directly from the perfect
decryption property of the encryption scheme. It is essential here that we force the sender
to send all its randomness in the second round, since otherwise it may be possible for the
sender to “cheat” (for example, to send an invalid public key that could not possibly be
output by Gen).

Public-key encryption schemes with perfect decryption can be based on trapdoor per-
mutations, and so standard commitments can be based on that assumption. Specifically,
for a trapdoor-permutation generator Gen, the sender commits to a bit b by comput-
ing (f, f−1) ← Gen(1k; rGen), selecting r ← {0, 1}n, computing y = f(r), and sending
(f, y, h(r)⊕ b) to R, where h is hard-core for f . The sender decommits by sending (rGen, r).

In the next lecture, we will see how to construct standard commitment schemes from
the much weaker assumption of the existence of one-way functions.

References

[1] U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In
22nd ACM Symposium on Theory of Computing, pages 416–426, 1990.

21-5

CMSC 858K — Advanced Topics in Cryptography April 20, 2004

Lecture 22

Lecturer: Jonathan Katz Scribe(s): Nagaraj Anthapadmanabhan, Ji Sun Shin

1 Introduction to These Notes

In the previous lectures, we saw the construction of a zero-knowledge proof system for the
language of 3-colorable graphs (and hence for all of NP) using a commitment scheme as a
tool. In this lecture we will discuss the two different notions of commitment schemes and
show how these types of commitment schemes can be constructed.

Recall that a commitment scheme consists of two phases: a commitment phase after
which the sender is supposed to be committed to a value, and a decommitment phase
during which the committed value is revealed to the receiver. Two types of commitment
schemes can be defined, one protecting against an all-powerful sender and one protecting
against an all-powerful receiver :

• A standard commitment scheme protects against a ppt receiver and an all-
powerful sender. In particular, a ppt receiver cannot determine any information
about the value committed to by the sender (this can be defined in a way similar
to indistinguishability for encryption) in the commitment phase, and an all-powerful
sender is bound to only one value (with all but negligible probability) following the
commitment phase. We say such a scheme is computationally hiding and information-
theoretically binding.

• A perfect commitment scheme protects against a ppt sender and an all-powerful
receiver. Namely, even an all-powerful receiver cannot determine any information
about the value committed to by the sender (except possibly with negligible proba-
bility) in the commitment phase, and a ppt sender is bound to only one value follow-
ing the commitment phase. We say it is computationally binding and information-
theoretically hiding.

It can be proved that commitment schemes which are both information-theoretically hiding
and information-theoretically binding do not exist.

2 Standard Commitment Schemes

We first consider some constructions of standard commitment schemes.

2.1 Constructions Based on One-Way (Trapdoor) Permutations

One possible construction is obtained by using a trapdoor permutation family. Here we show
how this can be used to allow a sender S to commit to a bit b:

22-1

S(1k, b) R(1k)

choose coins ω for Gen

(f, f−1)← Gen(1k;ω)

r← {0, 1}k
f, c = f(r), d = h(r)⊕ b
−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−
f−1, r, ω

−−−−−−−−−−−−−−−→
check (f, f−1)

?
= Gen(1k;ω);

check f(r)
?
= c;

b = d⊕ h(r)

To commit to a bit b, the sender S generates a trapdoor permutation (f, f−1), chooses a
random element r in the domain of f (here, the domain of f is assumed to be {0, 1}k), and
sends a description of f along with f(r) and h(r)⊕ b (here, h(·) is a hard-core bit of f). To
decommit, S sends the random string ω (used to prove that f is indeed a permutation), as
well as r. The receiver R does the verification in the obvious manner and recovers b.

The correctness property is obviously satisfied as the receiver R “accepts” if S acts
honestly. (This will be the case for all constructions in this lecture.) We now sketch why
the other two properties hold:

Binding: We need to prove binding even for an all-powerful sender. Notice that the f sent
in the first round must be a permutation, since the sender has to reveal the randomness ω
used to generate f in the decommitment phase (and we assume that Gen always outputs a
permutation). Thus, c uniquely determines a value r = f−1(c), and this in turn uniquely
determines b = h(r)⊕ d.

Hiding: Since f is one-way, a ppt receiver cannot distinguish h(r) from a random bit (we
use here the fact that (f, f−1) are randomly-generated, and that r is chosen uniformly at
random). Thus, h(r) computationally hides the value of b. A formal proof is left as an
exercise for the reader.

The reader may notice that we never use the trapdoor f−1 in the above construction.
Thus, we may in fact base the above construction on the (potentially) weaker assumption
of a one-way (not necessarily trapdoor) permutation.

2.2 A Construction Based on a One-Way Function

Actually, we can do even better and show a construction based on the minimal assumption
of a one-way function (the proof that this assumption is indeed minimal is left as another
exercise!). Here, we use the following “hard” theorem that was mentioned, but not proved,
in class:

Theorem 1 The existence of a one-way function implies the existence of a length-tripling
pseudorandom generator (PRG).

Recall the definition of a (length-tripling) PRG:

22-2

Definition 1 G = {Gk : {0, 1}k → {0, 1}3k}k∈ is a pseudorandom generator (PRG) if the
following is negligible for any ppt distinguisher D:

∣

∣

∣
Pr

[

x← {0, 1}3k : D(x) = 1
]

− Pr
[

s← {0, 1}k ;x = Gk(s) : D(x) = 1
]
∣

∣

∣
. (1)

In other words,
U3k ≈ G(Uk) (2)

where Uk denotes the uniform distribution on k-bit strings. ♦

We would like to use a PRG to construct a standard commitment scheme. We will first
see a näıve idea that does not work.

S(1k, b) R(1k)

if b=0 {
s← {0, 1}k

x = G(s)}
if b=1

x← {0, 1}3k x
−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−
if b=0

decom = s
if b=1

decom = “random”
decom

−−−−−−−−−−−−−−−→
Check decommitment

I.e., S sends a pseudorandom string to commit to “0”, and a random string to commit to
“1”. To decommit, S sends the seed if x was pseudorandom (i.e., b = 0) or just says that
x is “random” otherwise (i.e., b = 1).

It is easy to see that the above scheme satisfies hiding: this follows readily from the
definition of a PRG. Unfortunately, the scheme is not binding, even for a polynomial-time
sender. This is because a cheating S∗ can send a pseudorandom string x = G(s) and later
decommit this to either a 0 (by sending s) or a 1 (by claiming that x is a random string).
Note that the properties of the PRG imply that a pptR cannot even tell that S ∗ is cheating!

Informally, the problem arises from the fact that the sender is not required to use any
“secret” when committing to b = 1. So, we fix this by making the sender use a secret for
either value of b. The following construction is due to Naor [1]:

22-3

S(1k, b) R(1k)

s← {0, 1}k
r0

←−−−−−−−−−−−−−−−
r0 ← {0, 1}

3k

x = G(s)
if b=0

y = x = G(s)
if b=1

y = x⊕ r0
y

−−−−−−−−−−−−−−−→
−−−−−−−−−−−−−−

s, b
−−−−−−−−−−−−−−−→

if b=0

check y
?
= G(s)

if b=1

check y
?
= G(s)⊕ r0

The receiver first sends a random 3k-bit string r0. The sender chooses a random seed s and
computes x = G(s). The sender simply sends x to commit to “0”, and sends x⊕r0 to commit
to “1”. To decommit, S sends both s and the committed value (and the receiver verifies
these in the obvious way). Clearly, this construction satisfies the correctness property. We
claim that this construction also satisfies the hiding and binding requirements:

Hiding: The following claim proves the hiding property:

Claim 2 If a ppt cheating receiver R∗ can distinguish a commitment to 0 from a commit-
ment to 1 (before the decommitment phase), then we can use R∗ to “break” the PRG.

Proof LetR∗ be a ppt receiver that distinguishes a commitment to 0 from a commitment
to 1 with probability ε(k) (namely, the difference between the probability that R∗ outputs
1 when interacting with a sender committing to a “0” and the probability that R∗ outputs
1 when interacting with a sender committing to a “1” is ε(k)). We want to show that ε(k)
is negligible. To that end, use R∗ to construct a ppt distinguisher D trying to distinguish
whether its input x is random or pseudorandom:

D(x)

b← {0, 1}
run the commitment phase of the above scheme with R∗ using bit b; i.e.:

get r0 from R∗

if b = 0 send x to R∗

if b = 1 send x⊕ r0 to R∗

if R∗ guesses b correctly, then D outputs 1 (i.e., “PRG”)
otherwise, D outputs 0 (i.e., “random”

Note that when x is pseudorandom, D acts as a completely honest sender and so the
probability that D outputs 1 is given by:

1

2
· (Pr[R∗ outputs 0 | S commits to 0] + Pr[R∗ outputs 1 | S commits to 1])

22-4

=
1

2
· (1− Pr[R∗ outputs 1 | S commits to 0] + Pr[R∗ outputs 1 | S commits to 1])

= 1/2 + ε(k)/2.

On the other hand, when x is random then the view of R∗ is independent of b (since
either one of x or x ⊕ r0, for any r0, is just a uniformly-distributed string) and so the
probability that D outputs 1 is exactly 1/2. The security of the PRG thus implies that
1/2 + ε(k)/2 − 1/2 = ε(k)/2 is negligible, completing the proof.

Binding: Proving the binding property is more interesting. We show that an all-powerful
S∗ can decommit to two different values with only negligible probability (assuming R is
honest). Note that S∗ can only potentially cheat if R sends an r0 for which there exist
y, s, s′ such that: y = G(s) and r0 = y ⊕ G(s′) or, in other words, if there exist s, s′ such
that G(s)⊕G(s′) = r0. Call r0 with this property “bad”. Because s and s′ are k-bit strings,
there are at most 22k possible “bad” values r0. Since r0 is a uniformly-random 3k-bit string,
the probability of R choosing a “bad” r0 is at most 22k/23k = 2−k, which is negligible.

3 Perfect Commitment Schemes

Perfect commitment schemes seem much more difficult to construct. In particular, a con-
struction of a perfect commitment scheme based on one-way permutations is known, but it
is an open question to construct such a scheme based on one-way functions. Here, we show
two constructions based on number-theoretic assumptions.

3.1 A Construction Based on the Discrete Logarithm Assumption

The following scheme allows a sender to commit to a string x ∈ {0, 1}k−1, not just a bit:

S(1k, x) R(1k)

generate a cyclic group G
of prime order q
with |q| = k

g, h, G, q
←−−−−−−−−−−−−−−−

pick random generators g, h ∈ G

verify q prime; |q| = k
verify g, h generators of G
view x as a value in � q

r ← � q

c = gxhr c
−−−−−−−−−−−−−−−→

−−−−−−−−−−−
x, r

−−−−−−−−−−−−−−−→
verify c

?
= gxhr

Note that in a cyclic group of prime order, every element except the identity is a generator.
We now show that the above constitutes a perfect commitment scheme:

22-5

Hiding: We claim that c is a uniformly-distributed group element, independent of the
committed value x. To see this, note that the sender verifies that q is prime and that g, h
are generators of G (also, S implicitly verifies that G is a cyclic group of prime order).
Fixing x and considering any element µ ∈ G, we calculate the probability that c = µ
(where the probability is over the sender’s choice of r). Let α = logg µ and β = logg h
(these are well-defined, since g is a generator and G is cyclic). Then c = µ if and only if
α = logg µ = logg(g

xhr) = x + rβ mod q or, equivalently, if r = (α − x)β−1 mod q (note
that β−1 mod q is defined, since h is a generator so logg h 6= 0). But the probability that
r takes on this value is exactly 1/| � q| = 1/q = 1/|G|. This implies that the value of x is
perfectly hidden.

Another way to view this (“in reverse”) is to note that for any value c there are exactly
q possible pairs (x, r) satisfying gxhr = c, one for each possible value of x ∈ � q. So, even
an all-powerful R∗ cannot tell which value of x is the one committed to by S.

Binding: We show that if a ppt sender S∗ can decommit to two different values, then we
can use S∗ to break the discrete logarithm assumption in G. On input G, q, g, h, algorithm
A (with the goal of computing logg h) sends G, q, g, h to S∗ who responds with a value c ∈ G.

If S∗ is now able to decommit to (x, r) and (x′, r′), with x 6= x′ and gxhr = c = gx′

hr′

, then
A can compute the desired discrete logarithm by noting that:

gxhr = gx′

hr′

⇐⇒ gx−x′

= hr′
−r ⇐⇒ g(x−x′)/(r′

−r) = h,

or logg h = (x−x′)(r′−r)−1 mod q. (Note that (r′−r) is non-zero as long as h is a generator
— if not, then it is easy for A to compute logg h!). Clearly, A runs in polynomial time if S∗

does; also, if S∗ decommits to two different values with probability ε(k) then A correctly
computes logg h with the same probability. Since this must be negligible under the discrete
logarithm assumption, the binding property follows.

3.2 A Construction Based on the RSA Assumption

The next construction is based on the RSA assumption (for large prime public exponents),
and again allows the sender to commit to a string x ∈ {0, 1}k .

S(1k, x) R(1k)

generate k-bit primes p, q
set N = pq
choose a prime e s.t. e > N

verify e prime; e > N ; µ ∈ � ∗

N
N, e, µ

←−−−−−−−−−−−−−−−
µ← � ∗

N

view x as an element of � e

r ← � ∗

N

c = µxre mod N
c

−−−−−−−−−−−−−−−→
−−−−−−−−−−−

x, r
−−−−−−−−−−−−−−−→

verify x ∈ � e and c
?
= µxre mod N

We now prove both hiding and binding:

22-6

Hiding: Before sending the commitment, the sender verifies that e is prime and e > N ;
this guarantees that gcd(e, φ(N)) = 1. (We require e > N because the receiver might try
to cheat and send a modulus N which is not a product of two primes.) Thus, the function
f : � ∗

N → � ∗

N defined by f(x) = xe mod N is a permutation. Since r is chosen uniformly
at random in � ∗

N, the value f(r) = re mod N is uniformly distributed in � ∗

N. Since µ ∈ � ∗

N

and hence µx ∈ � ∗

N, the product c = µxre is uniformly distributed in � ∗

N and reveals no
information about x.

Another way to understand this is that for any commitment c ∈ � ∗

N and for any possible
x ∈ � e, there exists an r ∈ � ∗

N such that c = µxre mod N . So no information about x is
revealed.

Binding: We show that if a cheating sender S∗ can decommit to two different values, then
we can use it to break the RSA assumption (for large public exponents). Namely, given
(N, e, µ) with N a randomly-generated product of two primes, e > N a prime, and µ chosen
at random from � ∗

N, we show how to use S∗ to compute µ1/e. Simply send (N, e, µ) to S∗

and assume it sends back c ∈ � ∗

N and can decommit to (x, r) and (x′, r′) such that x 6= x′,
µxre = c = µx′

(r′)e mod N , and both x, x′ ∈ � e. Without loss of generality assume x > x′.
We know that:

µxre = µx′

(r′)e mod N ⇐⇒ µx−x′

= (r′/r)e mod N.

Let ∆
def
= x−x′. Using the fact that x, x′ ∈ � e and e is prime, we see that ∆ < e and hence

gcd(∆, e) = 1. Using the extended Euclidean algorithm, we can compute in polynomial
time integers A,B such that A∆ + Be = 1 (over the integers). Then:

µ1 = µA∆+Be =
(

µ∆
)A

µBe mod N

=
(

(r′/r)e
)A

(µB)e mod N

=
(

(r′/r)AµB
)e

mod N,

and so
µ1/e = (r′/r)AµB mod N.

This algorithm runs in polynomial time if S∗ does, and outputs the desired inverse with the
same probability that S∗ can decommit to two different values. Since the former probability
is negligible under the RSA assumption (for large prime exponents), the binding property
follows.

References

[1] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology 4(2): 151–
158 (1991).

22-7

CMSC 858K — Advanced Topics in Cryptography April 22, 2004

Lecture 23

Lecturer: Jonathan Katz Scribe(s):
Nicholas Sze
Ji Sun Shin
Kavitha Swaminathan

1 Introduction

We showed previously a zero-knowledge proof system for 3-colorability. Unfortunately,
to achieve negligible soundness error while maintaining zero knowledge it was required to
repeat the basic, 3-round protocol sequentially polynomially-many times (giving a protocol
with polynomial round complexity). Here, we show a constant-round zero-knowledge proof
system for NP . We will also discuss the notion of proofs of knowledge and show a (non-
constant-round) zero-knowledge proof of knowledge for languages in NP .

1.1 A Brief Review

At a very high level, we review why our previous techniques did not suffice to give a constant-
round zero-knowledge proof system (refer to previous lectures for more details). Recall the
basic, 3-round protocol for 3-colorability: the prover sends commitments to the colorings of
the vertices in the graph; the verifier sends a “challenge” (i, j) (where this is an edge in the
graph); and the prover responds by “opening” the commitments to the colors for vertices i
and j. The verifier accepts only if these colors are different.

In proving the zero-knowledge property of this basic protocol, we relied on the fact
that a simulator could “guess” the verifier’s challenge (i, j) in advance with noticeable (i.e.,
inverse polynomial) probability. So, having the simulator “rewind” polynomially-many
times would be sufficient to allow the simulator to “guess correctly” at least once. But this
very property also allows a cheating prover to guess the verifier’s challenge in advance with
noticeable probability, meaning that the soundness will not be negligible.

We can decrease the soundness error by repeating the basic protocol many times. But
if we schedule to repetitions in parallel, the simulator has only negligible probability of
guessing all the verifier’s queries (simultaneously) in advance. On the other hand, if we
schedule the repetitions sequentially then the simulator can guess each challenge (one-by-
one) with noticeable probability.1

2 A Constant-Round Zero-Knowledge Proof for NP

Goldreich and Kahan [3] suggested the first constant-round ZK proof system for NP. The
intuition behind their scheme is to force the verifier to commit to its challenges in advance.
Then, once the simulator has learned the verifier’s challenges, it can rewind and commit to
a set of colorings that will allow it to answer the challenges correctly.

1Note that the simulator has more power than a cheating prover since it can rewind the verifier.

23-1

We now describe the protocol in detail:

Initialization The prover and verifier each have a graph G. The prover also knows a 3-
coloring of this graph. Let the common security parameter be k (this might be the
number of vertices in G, but it could also be independent of G).

First stage The verifier chooses k edges (i1, j1), . . . , (ik, jk) uniformly at random from (the
edge set of) G. It then commits to these edges using a perfect commitment scheme, and
sends these commitments to the prover. We saw in the last lecture that there are two-
round protocols for perfect commitment based on some number-theoretic assumptions,
so for convenience we will assume that the first stage is carried out in rounds 1 and 2.

Rounds 3–5 The prover and verifier now execute k parallel executions of the basic, 3-
round protocol for graph 3-colorability. Sketching this in a bit more detail (but still
assuming the reader is familiar with the basic protocol from a previous lecture):

Round 3 The prover commits to k different colorings of G using independent ran-
domness for each of these k iterations, and where the colors in each iteration
are committed to vertex-by-vertex (as usual). It is stressed that independent
randomness is used in each of the k iterations, so in particular each of the k
colorings is a random permutation of the coloring the prover started with.

Round 4 The verifier decommits the challenges that it committed to in the first
stage. This results in a sequence of k edges (and the corresponding decommit-
ments) that are sent to the prover.

Round 5 The prover first checks to make sure that the verifier opened his com-
mitments correctly. If not, then the verifier is cheating so the prover aborts.
Otherwise, the prover responds to the challenges as usual: in iteration `, if the
challenge is (i`, j`) then the prover reveals the colors of vertices i and j in the
`th iteration.

Acceptance The verifier accepts only if all k iterations were successfully completed.

Note that the verifier uses a perfect commitment scheme to commit to its challenges
in the first phase, while the prover uses a standard commitment scheme to commit to
the colorings in round 3. The is necessary because a proof system requires soundness to
hold against an all-powerful (cheating) prover. If the verifier used a standard commitment
scheme, then an all-powerful prover would be able to figure out the verifier’s challenges
before round 3, and could then fool the verifier into accepting even if G were not a 3-
colorable graph. Similarly, if the prover’s commitments were not information-theoretically
binding then it would be able to “change” its answers depending on the challenges of the
verifier.

Given the above discussion, it is easy to see that the above scheme satisfies correctness
and has negligible soundness error even for an all-powerful prover. The difficult part is to
show that the protocol is zero knowledge. In fact, a full proof is quite involved and we will
not give one here (see [3]). Instead, we will only give some of the intuition for the proof by
considering the case of a verifier who always opens the commitments correctly in round 4.
Also, we will be relatively informal here (since we are not giving a complete proof anyway)

23-2

but the interested reader will be able to derive a proof for this restricted case from the proof
given earlier for the basic, 3-round protocol.

A simulator for the type of verifier considered here proceeds as follows:

1. For the first phase, the simulator runs the perfect commitment scheme normally and
obtains a sequence of commitments from the verifier.

2. Simulating round 3, the simulator sends k “garbage” commitments to colorings of G.
Namely: for each of k iterations, commit to “red” for each vertex of the graph. (The
simulator must commit to “garbage” because it does not know a coloring. But by
indistinguishability of the commitments, a poly-timer verifier can’t distinguish these
“garbage” commitments from commitments that would be sent by a real prover.)

3. The verifier then decommits to the challenges that it committed to in the first stage.
(Recall we assume that the verifier always decommits properly.) Denote these chal-
lenges by (i1, j1), . . . , (ik, jk).

4. Now, the simulator “rewinds” the verifier and sends k commitments to colorings of G
for which it can answer the challenges of the verifier. That is: for the `th iteration, the
simulator chooses random, distinct colors for vertices i` and j`, commits to these colors
for i` and j`, and commits to “red” for all other vertices (in that iteration). Denote
these commitments by com1, . . . , comk (each com` is composed of commitments for
each vertex of G).

5. The verifier again decommits to the challenges that it committed to in the first stage.
Although we assume that the verifier always decommits properly, we do not necessarily
assume that the decommitted values now are the same as they were before! However,
they do in fact have to be the same with all but negligible probability ; this follows from
the (computational) binding of the commitment scheme used in the first phase.

6. Assuming the commitments were again opened in the same way, the simulator can
easily decommit the relevant vertices correctly.

7. The final “view” output by the simulator includes the verifier’s random coins, the
messages sent to the verifier during the first stage, the second sequence of commitments
com1, . . . , comk, and the decommitments for the appropriate vertices.

Informally, the simulated transcript is indistinguishable from a real transcript because
of the hiding property of the commitment scheme used by the prover in the 3rd round. For
a careful proof in the general case and much more discussion and details, see [3].

3 Proofs of Knowledge

Proofs of knowledge may be viewed as formalizing an even stronger notion of soundness.
Very informally, a proof system may be viewed as demonstrating that a particular statement
is true; a proof of knowledge may be viewed as demonstrating that the prover “knows” why
the statement is true. Although it is fair to say that the notion of a proof of knowledge
was introduced for (very important) technical reasons, there are some practical examples of

23-3

why proofs of knowledge are necessary. As an example of the latter, let G be a finite cyclic
group of order q in which the discrete logarithm assumption is believed to hold, and let g
be a generator of G. Consider the language LG = {h | ∃x ∈ � q s.t. gx = h}. On the one
hand, LG is just G itself since for every element h ∈ G we know that g logg h = h. So a proof
that h ∈ LG is trivial (assuming that deciding membership in G is trivial). On the other
hand, a proof of knowledge that h ∈ LG implies that the prover “knows” the value of logg h,
something that is not implies by a proof alone. Similarly, if f is a one-way permutation and
we define Lf = {y | ∃x s.t. f(x) = y}, then a proof for Lf is trivial (since Lf contains all
strings) but a proof of knowledge that y ∈ Lf is not (as it implies that the prover “knows”
f−1(y)).

Of course, this leaves us with a vague sense of discomfort: what does it mean for
a machine to “know” something? We define this in terms of the ability to extract the
knowledge from the machine: i.e., a machine M “knows” something if there is a poly-time
process by which we can extract this knowledge from M . We do not give a formal definition
here (see [2] or [1] instead), but give the following informal definitions instead:

Definition 1 A relation R is a set of pairs of strings. A relation is said to be “polynomial-
time” if: (1) there exists a polynomial p(·) such that (x, y) ∈ R implies |y| ≤ p(|x|), and
(2) given a pair (x, y), one can decide in polynomial time (in |x|) whether (x, y) ∈ R. ♦

Any relation R defines a language LR
def
= {x | ∃y s.t. (x, y) ∈ R}. Furthermore, if R

is polynomial time, then LR ∈ NP . Finally, any language L ∈ NP defines a relation

RL
def
= {(x, y) | x ∈ L ∧ y is a witness for x}.

Definition 2 Let R be a polynomial-time relation, and LR be as above. A proof system
(P,V) for LR is a proof of knowledge for LR with soundness error ε(k) if the following
holds for all x and all cheating provers P∗: Let succP∗(k) = Pr[〈P∗,V〉(1k, x) = 1]. If
succP∗(k) > ε(k) then with probability negligibly close to succP∗(k) one can extract a value
y from P∗ in polynomial time2 such that (x, y) ∈ R. A proof of knowledge for LR is one
having negligible soundness error. ♦

This definition will hopefully become more clear after we show an example in the following
section.

Note that the zero-knowledge (ZK) requirement is orthogonal to the proof of knowledge
(PoK) requirement. The former protects the prover from a malicious verifier, while the latter
protects (in some sense) a verifier from a malicious prover. On the other hand, without any
additional requirements it is trivial to construct a PoK for any polynomial-time relation: on
common input x, the prover simply sends y such that (x, y) ∈ R. So, we will be interested
in witness indistinguishable PoKs (WI-PoKs) or ZK-PoKs.

3.1 A Proof of Knowledge for Hamiltonian Cycle

Here, we show a basic 3-round ZK PoK (with non-negligible soundness error) for the lan-
guage HAM of Hamiltonian cycles (this is the set of graphs containing a Hamiltonian

2Paralleling the case of zero-knowledge, extraction in expected polynomial-time are often allowed.

23-4

cycle — i.e., a cycle that includes each vertex of the graph exactly once). This language is
NP-complete, so this gives3 a PoK for all of NP .

The protocol proceeds as follows:

P(G,Ham-cycle) V(G)

pick a random permutation
Π of the graph G;
commit to the adjacency
matrix of Π(G) �

��� com11 · · · com1n

...
. . .

...
comn1 · · · comnn

����
�

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−− c← {0, 1}
if c = 0, open all commit-
ments and send Π
if c = 1, open commit-
ments on the Hamiltonian
cycle

open according to c value
−−−−−−−−−−−−−−−→

verify commitments
if c = 0 check that the ma-
trix is equal to Π(G)
if c = 1 check that a cycle
was revealed

Claim 1 This is a proof of knowledge with soundness error 1/2.

Proof Note that for any cheating prover and any graph G, this prover either succeeds with
probability 0, probability 1/2, or probability 1. All we need to prove (cf. the definition of
proofs of knowledge) is that if P∗ succeeds with probability 1, then we can extract from P ∗

a Hamiltonian cycle in G with probability negligible close to 1 (in fact, we will extract with
probability 1). Succeeding with probability 1 simply means that it answers both possible
challenges correctly.

Given such a G and P∗ who convinces the verifier with probability 1, we simply let the
prover send its initial message; send challenge “0” and get the response; then rewind the
prover and send challenge “1” and get the response. By assumption, both responses of P ∗

would cause the honest verifier to accept. So, from the c = 0 response, we have a graph
G′ (that P∗ committed to in the first round) and a permutation Π such that Π(G) = G ′.
From the c = 1 response, we have a Hamiltonian cycle in G ′. It is now easy to recover a
Hamiltonian cycle in the original graph G.

3There are some additional subtleties here: we need it to be the case that for any L ∈ NP there exist
poly-time computable functions f1, f2 such that: x ∈ L ⇔ f1(x) ∈ HAM and also (f1(x), y) ∈ RHAM ⇔

(x, f2(y)) ∈ RL.

23-5

The proof system is also zero knowledge. A simulator Sim can be constructed as follows:

Sim(G)

Repeat k times:
1 Guess c′ ← {0, 1}
2a If c′ = 0, commit to a random permutation Π of G
2b If c′ = 1, commit to a random cycle graph
3 Send the commitments to the verifier, who responds with c
4 If c = c′, output a transcript including the correct response

We do not prove that this simulator “works”, but leave this as an exercise for the reader.
As usual, by repeating the protocol multiple times we can decrease the soundness error.

We know that by repeating the protocol sequentially we retain the zero-knowledge property
(at the expense of high round complexity); what about the proof of knowledge property?

Claim 2 Running the above protocol k times sequentially results in a proof of knowledge
with soundness error 1/2k.

Proof (Sketch) Assume a graph G and a prover P∗ who convinces V with probability
strictly greater than 1/2k. We can view the execution of P∗ with V as a binary tree of
height k, where the root corresponds to the beginning of the protocol and a node at level
i (with the root at level 0) has two children corresponding to the two possible challenges
that can be sent at round i + 1. Call a leaf of the tree accepting only if the prover answers
correctly to all challenges on the path from the root to this leaf. Since P ∗ convinces V with
probability strictly greater than 1/2k, there are at least two accepting leaves. Intuitively,
the paths from these two leaves to the root must have at least one node in common; at this
node, P∗ answers correctly for both possible challenges, and we can then extract as in the
previous claim. We now show how to do this efficiently:

for i = 1, · · · , n
run P∗ for round i
by rewinding, send both c = 0 and c = 1
if P∗ answers correctly both times then extract a witness (as before)
otherwise, increment i and continue along the path for which P ∗ answered correctly

(In the last step, there must be a value of the challenge for which P ∗ answers correctly since
otherwise P∗ convinces the verifier with probability 0.) Eventually, the above algorithm
finds a node where two paths from the root to accepting nodes diverge (drawing a picture
and following the execution of the above algorithm should convince you of this).

If we want to construct a protocol with better round complexity, we can do so by
running the basic, 3-round protocol in parallel. We know that this will not preserve the
zero-knowledge property, but it will preserve the (weaker) property of witness indistin-
guishability. What about the proof of knowledge property?

Claim 3 Running the basic protocol k times in parallel results in a proof of knowledge with
soundness error 1/2k. (However, here extraction requires expected polynomial time.)

23-6

Proof Note that we have a 3-round protocol where the prover begins by sending a vector
of k commitments (to adjacency matrices); the verifier sends a k-bit challenge vector; and
the prover then responds to each of the k 1-bit challenges individually, as in the basic
protocol. If we can find two different vectors ~c,~c ∗ for which the prover responds correctly,
then we can extract a witness as before: simply find an index i where ci 6= c∗i (such an index
must exist since ~c 6= ~c∗) and then extract using the ith adjacency matrix sent by the prover
in the first round and the ith response given by the prover in the last round.

Assume, then, that we have a G and a prover P∗. Consider the following algorithm to
extract a witness:

P∗ sends its vector of commitments
~c← {0, 1}k

run P∗ using challenge ~c
if P∗ fails to respond correctly, halt
otherwise:
for i = 0 to 2k − 1:
~c∗ ← {0, 1}k

run P∗ using challenge ~c∗

if P∗ responds correctly and ~c 6= ~c∗, extract a witness and halt
run P∗ using challenge 〈i〉
if P∗ responds correctly and ~c 6= 〈i〉, extract a witness and halt

(In the above, 〈i〉 represents a standard k-bit binary encoding of the number i.)
Let ε(k) denote the probability that P∗ answers correctly. We need to show two things:

(1) if ε(k) > 1/2k, then we extract a witness with (negligibly close to) the same probability;
(2) the algorithm above runs in expected polynomial time regardless of ε.

If ε > 1/2k then there are at least 2 difference challenges for which P ∗ answers correctly.
The algorithm above enters the loop with probability exactly ε; once it enters the loop, it is
guaranteed to eventually find a second, different challenge for which P ∗ answers correctly.
Since it extracts a witness in this case, we have that it extracts a witness overall with
probability exactly ε. (Actually, we have ignored the negligible probability with which P ∗

might be able to break the binding property of the commitment scheme. But the basic
argument remains the same or we can use a commitment scheme with perfect binding.)

We also need to also argue that extraction runs in expected polynomial time (in k); this
seems worrisome since the inner loop potentially counts up to 2k−1. Consider the following
cases: if ε = 0 then clearly the algorithm runs in polynomial time (since it never enters the
loop). If ε = 2−k then we enter the loop with probability ε and then run 2k − 1 iterations
of the inner loop. So the expected number of loop iterations is:

2−k(2k − 1) + (1− 2−k) · 0 < 1,

and the algorithm runs in expected polynomial time (we do not extract a witness in this
case, but that is ok). Finally, if ε > 2−k then consider what happens if P∗ answers correctly
in the initial stage for a vector ~c. In this case, the probability of choosing ~c∗ 6= ~c for which
P∗ answers correctly is exactly 2kε−1

2k ≥ ε/2. So the expected number of loop iterations
until such a ~c∗ is found is at most 2/ε. Since the probability of entering the loop in the first

23-7

place is ε, the expected number of loop iterations overall is:

ε ·
2

ε
+ (1− ε) · 0 < 2,

and the algorithm runs in expected polynomial time.

References

[1] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Crypto ’92.

[2] O.Goldreich. Foundations of Cryptography, vol 1: Basic Tools. Cambridge University
Press, 2001.

[3] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 1996.

23-8

CMSC 858K — Advanced Topics in Cryptography April 27, 2004

Lecture 24

Lecturer: Jonathan Katz Scribe(s): A. Anand, G. Taban, M. Cho

1 Introduction and Review

In the previous classes, we have discussed proofs of knowledge (PoKs) and zero-knowledge (ZK)
proofs. We briefly review these notions here:

ZK proofs. Zero-knowledge proofs involve a prover P trying to prove a statement to a verifier V
without revealing any knowledge beyond the fact that the statement is true. For example, consider
the problem of proving membership in an NP language L, (e.g., graph Hamiltonicity, 3-coloring,
etc.). A ZK proof protects against a cheating prover, in the sense that if a prover tries to give a
proof for an x 6∈ L the verifier will reject the proof with all but negligible probability. Further, a ZK
proof protects against a cheating verifier, in the sense that it ensures that the verifier (informally)
does not learn anything from a proof that x ∈ L other than the fact that x ∈ L.

A ZK proof system requires the existence of a simulator who can simulate a transcript of the
protocol execution without knowing the witness to the statement. As we have seen, a simulator typ-
ically does this by rewinding the verifier to a prior state and then trying to continue the simulation
until it comes up with a valid transcript.

Proofs of knowledge. Proofs of knowledge are protocols in which the prover actually proves that
he “knows” a witness. In addition to the formal sense in which this holds (i.e., via the additional
requirement that there exists a knowledge extractor who can extract a valid witness from any prover
who succeeds in giving a correct proof with high-enough probability), there are also examples where
membership is “easy” to determine but proving knowledge of a witness might be hard. The classic
example is the case of a cyclic group G with generator g in which the discrete logarithm is hard.
Here, for a given h ∈ G it might be easy to determine that, in fact, h is an element of G and
therefore there exists an x such that gx = h; however, we may additionally want a prover to prove
that he knows this x.

Thinking about it a bit, the ZK property and the PoK property seem to be at odds: a ZK proof
requires a simulator who (typically) rewinds a cheating verifier to simulate a proof without knowing
a witness, while a PoK requires a knowledge extractor who (typically) rewinds a cheating prover
to extract a witness. And indeed, we will see in what follows that the approach to constructing a
constant-round ZK proof from the previous lecture (namely, forcing the verifier to commit to its
challenges in advance) seemingly destroys the PoK property. To obtain a constant-round protocol
which is both zero-knowledge and admits a knowledge extractor we will consider a relaxation of
proofs called arguments in which the soundness condition is only required to hold only with respect
to polynomial-time cheating provers (recall that proofs require the soundness condition to hold even
for all-powerful provers).1

1In fact, constant-round zero-knowledge proofs of knowledge for all of NP are possible, but we will not see an
example in this course.

24-1

2 Review: A ZK PoK Protocol

In this section, we review a ZK PoK protocol for graph Hamiltonicity from the previous lecture;
see Figure 1. In the figure, G is a graph and C represents a Hamilton cycle in G. In the previous
lecture, we showed that this protocol is zero-knowledge and a proof of knowledge with soundness
error 1/2. We now informally recall the proofs of these properties:

• To prove the zero-knowledge property, we considered the following simulator: it guesses in
advance a bit c̃. If c̃ = 0, it commits to a (random permutation of) the adjacency matrix
for G; if c̃ = 1, it commits to a (randomly-permuted) cycle graph. It sends the resulting
commitment to the verifier who responds with a challenge c. If c̃ = c then the prover responds
in the natural way and is done. Otherwise, the simulator rewinds and tries again. Since c̃ = c
with probability 1/2 each time, if the simulator rewinds k times it will succeed at least once
with all but negligible probability. (The rest of the proof is then devoted to showing that the
simulation is computationally indistinguishable from a real execution.)

• To show the knowledge extraction property, assume we have a prover who gives a correct
proof with probability better than 1/2. This implies that the prover responds correctly for
both possible values of c. So we simply rewind the prover, send him both possible challenges,
and use the two (correct) responses to compute a Hamiltonian cycle in G.

Steps P(G,C) V(G)

1
commit(Π(G))

−−−−−−−−−−−−−−−→

2
c∈{0,1}

←−−−−−−−−−−−−−−−

3

if c = 0 : send decommit(AdjMatrix(G)) and Π

else : send decommit(cycle(G))
−−−−−−−−−−−−−−−→

Figure 1: A ZK-PoK protocol.

We also noted that we could run the above protocol k times sequentially to reduce the soundness
error to 2−k. Doing so maintains the ZK property of the construction, and we showed that the
resulting protocol was also a PoK with the claimed soundness error.

2.1 A Parallel Execution of the Protocol

What happens if we run the original protocol k times in parallel? The PoK property remains intact:

Claim 1 Running the above protocol k times in parallel results in a PoK with soundness error 2−k.

Proof To prove the above claim, we consider a knowledge extractor E which works as follows.

• Obtain a first message from the prover P .

• Pick a random challenge c1 ∈ {0, 1}
k , and send this challenge to the prover. If the prover

does not answer correctly, stop.

24-2

• Otherwise, repeatedly choose a random c2 ∈ {0, 1}
k, rewind the prover, and send c2 to the

prover until the prover answers correctly a second time and c2 6= c1. In parallel, perform
an exhaustive search for a Hamiltonian cycle in G and stop once one is found or when it is
determined that no such cycle exists.

We now show two facts: (1) E runs in expected polynomial time (this assumes that P runs in
expected polynomial time), and (2) if the probability p that P gives a successful proof is greater
than 2−k then E succeeds in computing a Hamiltonian cycle in G with probability p.

To prove the first statement, note that when p = 0 then E clearly runs in (strict) polynomial
time. So consider the case that p > 2−k. Let n > 1 be the number of challenges for which P answers
correctly (i.e., p = n

2k). When P does not respond correctly to the first challenge c1 (with happens
with probability 1− p), then E runs in (strict) polynomial time. When P responds correctly to c1,
then the expected number of times E rewinds P until it finds a second (different) c2 for which P
answers correctly is (n−1

2k)−1. Overall, then, the expected running time of E is given by:

(1− p) · poly(k) +
n

2k
·

2k

n− 1
· poly(k) = poly(k)

(we use poly(k) here to refer to an arbitrary polynomial). The last case remaining is when p = 2−k

(i.e., P responds correctly to exactly one challenge). As before, when P does not respond correctly
to c1 then E runs in strict polynomial time. When P responds correctly to c1, then E will never
find a c2 6= c1 for which P answers correctly again. But, P is also running an exhaustive search for
a Hamiltonian cycle in G and we assume this takes at most 2k · poly(k) steps.2 So, the expected
running time of E is given by:

(1− 2−k) · poly(k) = 2−k · 2k · poly(k) = poly(k).

We now move on to a proof of the second statement. Note that P responds correctly to
challenge c1 with probability exactly p. We claim that as long as p > 2−k, then E always computes
a Hamiltonian cycle whenever P responds correctly to c1. To see this, note first that p > 2−k

implies that G has a Hamiltonian cycle. (We assume here that the commitments sent in the first
round are perfectly binding.) When P responds correctly to c1, then E stops its execution when
either (1) it finds a c2 6= c2 for which P also responds correctly, or (2) it completes its exhaustive
search for a cycle. In either of these cases, E can then compute the desired Hamiltonian cycle.

Unfortunately, k-fold parallel repetition of the protocol seems to destroy the zero-knowledge
property. At a minimum, the type of simulator we considered before does not work, and no
simulator is known which would prove the ZK property. In particular, if we consider the simulation
strategy as before then we would have a simulator who tries to guess c̃ = c in advance: but now
c ∈ {0, 1}k and so the probability of guessing correctly is negligible! (And so even repeatedly
guessing polynomially-many times will not help.)

2.2 Further Modifications?

We can try to recover the ZK property (for the protocol obtained via k-fold parallel repetition
of the original, 3-round protocol) by using the Goldreich-Kahan technique, in which the verifier
is forced to commit (using a perfectly-hiding commitment scheme) to their challenge vector c in

2If one is unhappy with this assumption, note that exhaustive search takes at most k! · poly(k) time and so by
running the protocol log k! = O(k log k) times in parallel the proof goes through.

24-3

advance. For future reference, let us call the round in which the verifier commits to c “round 0”.
This modification will indeed result in a zero-knowledge protocol. . . but the modified protocol no
longer appears to be a proof of knowledge! Indeed, the very fact that the verifier is forced to commit
in advance to c means that the knowledge extraction strategy outlined earlier will no longer work:
even E cannot break the commitment scheme, and so it cannot decommit to c2 6= c1 unless it
rewinds all the way back to round 0 and sends a new set of commitments, in which case P might
change its round-1 message!

Somewhat paradoxically(?), it is possible to design a constant-round ZK-PoK. Instead of show-
ing this, however, we consider a relaxation of the notion of a “proof” and show how to achieve both
knowledge extraction and zero-knowledge subject to this relaxation.

3 Zero-Knowledge Arguments of Knowledge

As discussed in the introduction, an argument requires soundness to hold only for provers running
in polynomial time (whereas a proof requires soundness to hold even for all-powerful provers). (An
argument of knowledge is defined similarly, such that a knowledge extractor is only required to
extract a witness from provers running in polynomial time.) We will now show a construction of
a constant-round zero-knowledge argument of knowledge due to Feige and Shamir. Our discussion
will be somewhat informal and “high-level”; the reader is referred to [2, 1] for further details.

Let f be a one-way function. The basic protocol proceeds in 6 rounds (it is possible to “collapse”
this to a 4-round protocol, but the proof is less intuitive in this case so we do not present this
extension). Let L be an NP language; we describe the protocol assuming the honest prover is
proving that x ∈ L given some witness w.

Rounds 1–3: The verifier chooses x1, x2 at random, computes y1 = f(x1) and y2 = f(x2), and
sends y1, y2 to the prover. The verifier then gives a 3-round witness-indistinguishable (WI)
proof of knowledge (with negligible soundness error) of “f−1(y1) or f−1(y2)”. Note that the
verifier can do this efficiently, since it knows witnesses x1, x2 (in fact, only one witness is
needed). We comment briefly below on the existence of 3-round WI proofs of knowledge.

Rounds 4–6: If the proof given by the verifier fails, the prover simply aborts. Otherwise, the
prover gives a 3-round witness-indistinguishable proof of knowledge of “f−1(y1) or f−1(y2)
or x ∈ L”. Note that the prover can do this efficiently since it has a witness that x ∈ L.

In the previous lecture we have already shown a 3-round WI proof of knowledge with negligible
soundness error: the k-fold parallel repetition of the basic, 3-round protocol (with soundness error
1/2). We proved explicitly last time that this protocol is a proof of knowledge with negligible
soundness error. The fact that it is witness indistinguishable follows from the facts that: (1) as
proved last time, the basic 3-round protocol is zero-knowledge; (2) zero-knowledge implies witness
indistinguishability, and hence the basic, 3-round protocol is witness indistinguishable; finally (3) we
saw in an earlier lecture that witness indistinguishability is preserved under parallel repetition.

We now discuss, informally, why this protocol is both zero-knowledge and an argument of
knowledge. (Note that it is certainly not a proof, since an all-powerful prover can invert f and then
give a successful proof even when x 6∈ L.)

Zero-knowledge. We show a simulator demonstrating that the protocol is zero knowledge (al-
though no formal proof will be given). The simulator, on input x ∈ L but without a witness,
proceeds as follows:

24-4

Rounds 1–3: Interact with the (possibly cheating verifier) V ∗ to obtain values y1, y2 and a tran-
script T of the first three rounds. If V ∗ does not successfully complete its proof of knowledge,
then the simulator can abort (just like the real prover would) and the simulation is done by
simply outputting T . Otherwise, if V ∗ does give a successful proof of knowledge, the simula-
tor runs the knowledge extractor for this 3-round proof to obtain a witness for “f −1(y1) or
f−1(y2)”. (If this extraction fails, then the entire simulation is aborted.) Note that, assuming
a witness is extracted, this gives an x such that either f(x) = y1 or f(x) = y2.

Rounds 4–6: Continuing in an execution with V ∗ with initial transcript T , the simulator now
simply gives a WI proof of knowledge of “f−1(y1) or f−1(y2) or x ∈ L”. The key point is that
the simulator can do this without any further rewinding since it does indeed know a witness
for this statement.

A proof that this results in a simulation which is computationally-indistinguishable from a real
execution is relatively straightforward given all the machinery at our disposal. The initial portion
of the transcript (i.e., the transcript T of the first 3 rounds) is identically distributed to the first 3
rounds in a real execution of the protocol. If V ∗ gives a successful proof in rounds 1–3, knowledge
extraction will succeed with all but negligible probability. Assuming this to be the case, then the
last 3 rounds in the simulation consist of a WI proof using the witness x extracted in the previous
phase; in a real execution, these last 3 rounds would be a WI proof using a witness for x ∈ L
(the same statement is being proved in either case). But witness indistinguishability of the proof
system used in rounds 4–6 implies that these two resulting transcripts are indeed computationally
indistinguishable.

Argument of knowledge. We next argue that the protocol is an argument of knowledge, which
will imply soundness (for poly-time provers). The knowledge extractor E is the obvious one: simply
run the knowledge extractor for the WI proof of knowledge given by the prover in rounds 4–6. The
analysis of E is the tricky part. A proof that E extracts a witness for x ∈ L follows from two claims
along the following lines:

Claim 2 (Informal) E extracts a witness for the statement “f−1(y1) or “f−1(y2) or x ∈ L” with
sufficiently-high probability (“sufficiently-high probability” here simply refers to the probability re-
quired by the definition of an argument/proof of knowledge).

This claim follows immediately from the fact that the proof given in rounds 4–6 is a proof of
knowledge. Next:

Claim 3 E extracts a witness for “f−1(y1) of f−1(y2)” with only negligible probability.

Thus, whenever E extracts a witness for “f−1(y1) or “f−1(y2) or x ∈ L” (which is does sufficiently-
often, by the previous claim) it in fact extracts a witness, as desired, for x ∈ L except with negligible
probability.

The proof of the above claim is more difficult, and proceeds in the following steps:

1. Say the probability of extracting a witness for “f−1(y1) of f−1(y2)” is p. Let pb denote the
probability of extracting a witness for f−1(yb). Clearly, either p1 ≥ p/2 or p2 ≥ p/2; assume
the former without loss of generality.

2. The above refers to the probability of extraction when, in rounds 1–3, the verifier (i.e., the
knowledge extractor playing the role of the verifier) gives a WI proof using witnesses for both

24-5

f−1(y1) and f−1(y2). In fact, it is enough to use only a witness for f−1(y2) when giving
this proof. Witness indistinguishability of the proof system in rounds 1–3 can be used to
show that the probability of extracting a witness for f−1(x1) is not affected by more than a
negligible amount, and so the probability of extracting a witness for f−1(x1) in this case is
negligibly close to p1 ≥ p/2.

3. We show that if p1 is non-negligible then we can use the cheating prover to invert the one-way
function f as follows: Given a point y1, choose a random x2, compute y2 = f(x2), and then
run the above experiment (giving the appropriate WI proof in rounds 1–3 and then extracting
in rounds 4–6). By what we have said above, the probability that we extract a witness for
f−1(y1) is negligibly-close to p1. But extracting a witness for f−1(y1) exactly means that we
have computed f−1(y1)! Since this cannot occur with more than negligible probability, we
conclude that p1 (and hence p) is negligible.

We remark that the use of two values y1, y2 in the argument system is essential to the above
proof. If we had used only a single value y1, then in order to reach the extraction phase (i.e.,
rounds 4–5) we would need to successfully complete the proof in rounds 1–3. . . but since this is not
a ZK proof we actually need a witness to do so. But if we have the witness f−1(y1) in rounds
1–3, then extracting this witness in rounds 4–6 is not a contradiction! The nice feature of the
Feige-Shamir system is that it allows the extractor to “switch” witnesses in rounds 1–3, and hence
derive the desired contradiction.

Very detailed and formal proofs of the above properties (as opposed to the hand-waving proof
sketches above) are given in [1].

4 Proof of Knowledge for Number Theoretic Arguments

The preceding ends our discussion (for now, anyway) of generic proofs/arguments for languages
in NP . We now focus in efficient proofs of knowledge for specific number-theoretic relations. In
particular, we show a proof of knowledge of discrete logarithms. Let G be a finite, cyclic group
of prime order q. Let g be a generator for g, and let h ∈ G be arbitrary. Consider the following
protocol in which a prover P tries to convince a verifier that P indeed known the discrete logarithm
logg h (i.e., an x such that gx = h):

Steps P (g, x, h = gx) V (g, h)

1 r ← � q

2
A=gr

−−−−−−−−−−−−−−−→

3
c

←−−−−−−−−−−−−−−− c← � q

4 γ = cx + r mod q
γ

−−−−−−−−−−−−−−−→ verify gγ = hc · A

Figure 2: A PoK for discrete logarithms.

It is not hard to see that the above protocol is complete: if the prover is honest then

gγ = gcx+r = gcx · gr = hc · A .

We now sketch why this protocol is a proof of knowledge. The knowledge extractor E will be
similar to the one defined earlier: if P responds correctly to an initial challenge c then E will

24-6

repeatedly rewind P until it finds a different challenge c′ for which P also responds correctly.3 If E
can find two such challenges c, c′, we claim that it can then compute the desired discrete logarithm.
Indeed, this means that E has values A, c, c′, γ, γ′ such that gγ = hcA and gγ′

= hc′A. We claim
that logg h = (γ − γ′)(c − c′)−1 mod q (which can be computed easily; note that c − c′ 6= 0 by
construction). Indeed:

g
γ−γ′

c−c′ =
(

gγ−γ′

)1/(c−c′)

=
(

gγg−γ′

)1/(c−c′)

=

(

hcA

hc′A

)1/(c−c′)

=
(

hc−c′
)1/(c−c′)

= h ,

as claimed.

References

[1] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis, Weizmann
Institute of Science, 1990. Available at http://www.wisdom.weizmann.ac.il/~feige.

[2] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. Crypto ’89.

[3] O. Goldreich. Foundations of Cryptography, Vol 1: Basic Tools. Cambridge University Press,
2001.

[4] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems
for NP . Journal of Cryptology, 1996.

3As previously, E will also have to perform an exhaustive search for logg h in parallel so that it doesn’t run “too
long”. Details omitted.

24-7

CMSC 858K — Advanced Topics in Cryptography April 29, 2004

Lecture 25

Lecturer: Jonathan Katz Scribe(s): (none)

1 Public-Key Identification Schemes

In this lecture, we discuss concrete applications of zero-knowledge proof systems to the task
of constructing (public-key1) identification schemes. We begin with an informal definition
of what these are.

Definition 1 A (public-key) identification scheme consists of a prover P who has generated
some public-/private-key pair (PK,SK), and wants to prove his identity to a verifier V who
knows PK. ♦

In terms of security, we say a scheme is secure against a passive eavesdropper if an
adversary cannot impersonate the prover even after passively monitoring multiple executions
of the protocol between the (real) prover and the (honest) verifier. We say a scheme is secure
against an active adversary if an adversary cannot impersonate the prover (to an honest
verifier) even after the adversary — acting in the role of the verifier — has interacted with
the prover multiple times. We stress that in the latter case the adversary is not restricted
to running the honest verification protocol, but may instead deviate arbitrarily from the
prescribed actions. We also remark that security against an active adversary implies security
against passive eavesdropping, since an active adversary can simulate passive eavesdropping
by simply acting as an honest verifier.

It is simple to construct a public-key identification scheme from any signature scheme:

P (SK) V (PK)
r

←−−−−−−−−−−−−−−− r ← {0, 1}k

σ ← signSK(r)
σ

−−−−−−−−−−−−−−−→ accept if VerifyPK(r, σ)=1

This scheme is secure against an active adversary. As an informal proof, imagine an adver-
sary who — playing the role of the verifier — interacts with the honest prover, say, n times.
In doing so, the adversary may send whatever values r1, . . . , rn it likes to the prover, who
responds by signing these values. Then, the adversary interacts with an honest verifier who
sends some value r̃. There are two possibilities:

1. r̃ ∈ {r1, . . . rn}. This happens only with probability n/2k. Since n is polynomial in
the security parameter k, this probability is negligible.

2. r̃ 6∈ {r1, . . . rn}. In this case, impersonation of the prover is equivalent to forging a
signature on a “new” (i.e., previously-unsigned) message. By security of the signature
scheme, this is infeasible.

1Although it is possible to consider the analogous case of private-key identification, the public-key setting

is the one more often considered in this context. Thus, when we say “identification scheme” we mean the

public-key setting by default.

25-1

It is also possible to construct an identification scheme based on any CCA1-secure
public-key encryption scheme:

P (SK) V (PK)
εPK(r)

←−−−−−−−−−−−−−−− r ← {0, 1}k

r′

−−−−−−−−−−−−−−−→ Accept if r = r′

A proof of security for this protocol (against active attacks) is slightly more difficult, but
not much more so.

Although these schemes are conceptually simple and achieve security against active at-
tacks, there are at least two drawbacks that have motivated the search for other identifica-
tion schemes: (1) the above schemes leave an undeniable trace that the prover executed the
identification protocol. One may want to avoid leaving behind such “evidence”. (2) Gen-
erally speaking, signature schemes and CCA1-secure encryption schemes are difficult to
construct (especially if we limit ourselves to the standard model). Thus, it is natural to
wonder whether we can construct identification schemes without relying on these tools. In-
deed, as we will briefly mention below, we can go in the reverse direction and build efficient
signature schemes (in the random oracle model) from identification schemes of a certain
form. In fact, it is fair to say that identification protocols have almost no practical applica-
tion as identification protocols per se. (The reason is that one typically wants identification
to be coupled with key exchange, so that communication between the parties can be se-
cured once they have identified each other.) However, identification protocols have found
extensive application as building blocks for other primitives, with signature schemes being
the primary example.

2 General Paradigms for Constructing Identification Schemes

We show now some general techniques for constructing identification schemes based on proof
systems satisfying various additional properties (many of these ideas are due to Feige, Fiat,
and Shamir [1]). One immediate idea is to use a zero-knowledge (ZK) proof of knowledge
(PoK) for a “hard” language. In more detail, consider the following identification protocol
based on a one-way function f :

• The public and secret keys are generated as follows: the prover chooses a random
x ∈ {0, 1}k (where k is the security parameter) and sets y = f(x). The public key is
y and the secret key is x.

• To identify himself to a verifier holding his public key y, the prover gives a ZK PoK
(with negligible soundness error) of x s.t. f(x) = y. The verifier accepts iff the proof
is successful.

We remark that, if we don’t care about round complexity, the ZK PoK can be based on the
one-way function f and so we get an identification protocol based on any one-way function.

It is not too hard to see that the above gives an identification scheme secure against
active attacks. We do not give a formal proof, but instead describe informally how such a
proof would proceed.

25-2

Theorem 1 The above identification scheme is secure against active adversaries.

Proof (Sketch) Assume we have an adversary A attacking the above identification scheme
via an active attack, and succeeding with probability ε(k). We will prove that ε(k) is
negligible. We can view the adversary’s attack as follows: first, the adversary receives a
public key y, where y = f(x) for random x ∈ {0, 1}k . Next, the adversary — playing the
role of a verifier who may act in an arbitrary manner — interacts with the honest prover
as many times as the adversary likes. We call this stage 1. Finally, the adversary interacts
with an honest verifier (holding public key y); we call this stage 2. The adversary succeeds
in impersonating the prover (in stage 2) with probability ε(k), where this probability is
taken over y, random coins used by the adversary and the honest prover in stage 1, and the
random coins of the adversary and the honest vefifier in stage 2.

Now, consider modifying the above experiment in the following way: in stage 1, instead
of having the honest prover P perform a real execution of the protocol with the adversary
A in stage 1, we instead run the zero-knowledge simulator Sim (guaranteed for the proof
system) in stage 1. Let ε′(k) denote the probability that A succeeds in impersonating P in
stage 2 in this modified experiment. By the properties of the ZK simulator, we can show
that the difference |ε(k)− ε′(k)| is negligible.

In the previous experiment, we no longer need to know a pre-image of y (i.e., x from the
original experiment). This means we can construct an adversary A′ (who will internally run
both A and Sim) who obtains a value y and then succeeds in giving a valid ZK PoK for this
y with probability ε′(k) (in particular, phase 1 is no longer relevant since A′ is simulating
all of phase 1 internally and there is no longer any need to interact with an outside prover).

But now we claim that we can use such an A′ to invert the one-way function f on a
randomly-generated output point y (i.e., y = f(x) for random x) with probability negligibly
close to ε′(k) in case this latter quantity is non-negligible. How do we do this? We simply
run the knowledge extractor for this proof system with adversarial prover A ′. This extractor
guarantees (informally) that if ε′(k) is non-negligible — and, in particular, larger than the
soundness error of the proof system — then an inverse of y will be extracted with probability
negligibly close to ε′(k).

In summary, if ε(k) is non-negligible, we end up with an efficient algorithm (but see the
remark below) inverting f with non-negligible probability. Since f is a one-way function,
this is a contradiction. Thus, we must have ε(k) negligible, as desired.

Technical remark: Actually, the algorithm we construct to invert f runs in expected poly-
nomial time rather than strict polynomial time (this is so since both the ZK simulator
and the PoK knowledge extractor may run in expected polymomial time). However, one
can show that the existence of an expected polynomial-time algorithm A1 which inverts f
with non-negligible probability implies the existence of a strict polynomial-time algorithm
A2 which inverts f with non-negligible probability (without giving the details, A2 simply
runs A1 but aborts if it runs for “too long”). Thus, the above proof does indeed lead to a
contradiction.

The above construction can be simplified if we are content to achieve security against a
passive adversary. In this case, we only need a proof system which is honest verifier zero-
knowledge (as well as being a proof of knowledge). Since in the case of a passive attack the

25-3

adversary (by definition) is limited to eavesdropping on executions of the protocol between
the prover and an honest verifier, honest-verifier zero-knowledge suffices in this case.

2.1 On Using Witness Indistinguishability

A natural question is whether we can further simplify things by using a witness indistin-
guishable (WI) proof of knowledge (in the case of an active adversary). As we will see,
the answer is yes; however, it requires some changes to the protocol as stated above. In
particular, recall that a WI proof guarantees nothing in case there is only one witness (since
then witness indistinguishability is trivial to achieve); so, we need to modify the protocol so
that two or more witnesses are available. The idea is similar to that used by Feige-Shamir
(cf. the previous lecture) in constructing their constant-round ZK argument of knowledge.

Let f be a one-way function. The protocol is as follows:

• The public and secret keys are generated by having the prover chooses two random
points x1, x2 ∈ {0, 1}

k and setting y1 = f(x1) and y2 = f(x2). The public key is
(y1, y2) and the secret key is x1. (As we will see, x2 is not needed.)

• To identify himself to a verifier holding his public key (y1, y2), the prover gives a WI
PoK (with negligible soundness error) of x such that either f(x) = y1 or f(x) = y2.

As before, we provide only a sketch of security for the above protocol.

Theorem 2 The above identification scheme is secure against active adversaries.

Proof (Sketch) Assume we have an adversary A attacking the above identification scheme
via an active attack, and succeeding with probability ε(k). We will prove that ε(k) is
negligible. We can view the adversary’s attack as follows: first, the adversary receives
a public key (y1, y2), where yi = f(xi) for random xi ∈ {0, 1}

k . Next, the adversary —
playing the role of a verifier who may act in an arbitrary manner — interacts with the honest
prover as many times as the adversary likes. We call this stage 1. Finally, the adversary
interacts with an honest verifier (holding public key (y1, y2)); we call this stage 2. The
adversary succeeds in impersonating the prover (in stage 2) with probability ε(k), where
this probability is taken over (y1, y2), random coins used by the adversary and the honest
prover in stage 1, and the random coins of the adversary and the honest vefifier in stage 2.

If ε(k) is not negligible, then by negligible soundness error of the PoK we can extract a
witness from the adversary in stage 2 of its attack with probability negligibly close to ε(k).
In particular, we extract either a “type 1 witness” (i.e., an x such that f(x) = y1) or a
“type 2 witness” (i.e., an x such that f(x) = y2) with non-negligible probability. Let ε1(k)
denote the probability that we extract a type 1 witness, and similarly for ε2(k). The above
shows that either ε1(k) or ε2(k) is not negligible (or possibly both are). We show that either
of these lead to an efficient procedure for inverting f with non-negligible probability, and
hence a contradiction.

If ε2(k) is not negligible, we can almost immediately derive our desired contradiction.
Given a point y which is equal to f(x) for a random x, simply choose x1 ∈ {0, 1}

k at
random and set the public key equal to (y1, y). We can now interact with the adversary
exactly as in the real experiment (recall that in the real protocol, the prover does not use

25-4

x2 anyway) and extract a type 2 witness with probability exactly ε2(k). (Note that this
will exactly be an inverse of y.) Since ε2(k) is non-negligible by assumption, we have the
desired contradiction.

In case ε1(k) is non-negligible, the only thing we need to do is to “switch” from using x1

to using x2. In particular, we now construct the public key (y1, y2) in the same way as before,
but throw away x1 instead of x2. Also, when interacting (as a prover) with the adversary
A (acting as a verifier) we use witness x2 instead of witness x1. (We extract a witness from
the adversary in stage 2 as before.) By witness indistinguishability of the proof system, one
can show that the probability ε′2(k) of extracting a type 2 witness is negligibly-close to the
probability of extracting a type 2 witness in the original experiment (i.e., |ε1(k)− ε2(k)| is
negligible). Thus, ε′2(k) is non-negligible. That this leads to a contradiction can be proven
in exactly the same way as above.

Technical remark: The same issue arises here as in the previous proof, in that the adversary
we construct to invert f runs in expected polynomial time rather than strict polynomial
time (due to the possible expected-polynomial running time of the knowledge extractor).
We may deal with this in exactly the same way as before.

In a later lecture, we will show how to efficiently instantiate the protocols of this section
and the previous section based on a specific number-theoretic assumption.

2.2 On Avoiding Proofs of Knowledge

The constructions in the previous sections rely in an essential way on the use of proofs
of knowledge (examining the previous proofs, we see that we need this property in order
to be able to extract the desired inverse of f). We show here that it is possible to base
identification schemes on zero-knowledge proofs.2 We will only sketch the idea, and leave
the proof to the reader. As far as we are aware, this idea originates in [2].

The concept is quite simple: instead of proving knowledge of some hard-to-compute
function (namely, f−1(y) as in the previous sections), we prove membership in some hard-
to-decide language. To be specific, let G be a pseudorandom generator (PRG) stretching
its input by k bits (we know that this can be constructed based on any one-way function).
Then consider the following identification protocol:

• The public and secret keys are generated by choosing a random x ∈ {0, 1}k and then
setting y = G(x). The public key is y and the secret key is x.

• To identify himself to a verifier holder his public key y, the prover gives a ZK proof
that y = G(x) for some x (i.e., that y is in the image of G, or that y is pseudorandom).

One can show that the above identification scheme is secure against active adversaries.

2We believe it is possible to also base identification schemes on witness indistinguishable proofs; however,

the idea of the previous section applied to the protocol of the present section will not work, and a more

complex construction is required.

25-5

References

[1] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. J. Crypto 1(2):
77–94 (1988).

[2] J. Katz and N. Wang. Efficiency Improvements for Signature Schemes with Tight Secu-
rity Reductions. ACM CCCS 2003.

25-6

CMSC 858K — Advanced Topics in Cryptography May 4, 2004

Lecture 26

Lecturer: Chiu Yuen Koo Scribe(s): (none)

1 Introduction

In this lecture, we study the Byzantine Agreement problem, defined as follows: consider
a network of n processors, where each pair of processors can communicate (this is the
so-called “point-to-point” model). Furthermore, at most t processors within this network
may be faulty; a faulty processor may exhibit arbitrary behavior. (We also assume that
the behavior of these faulty processors may be coordinated by a single adversary, and
sometimes do not place any computational restrictions on this adversary.) Initially, each
processor has an input value pi; this group of processors then runs a protocol which results
in each (non-faulty) processor deciding on a value p∗

i . Besides requiring that the protocol
terminate, a Byzantine agreement protocol also satisfies the following (as long as no more
than t processors are faulty):

Agreement All non-faulty processors decide on the same value. I.e., if i, j are non-faulty
then p∗i = p∗j .

Validity If the initial inputs of all non-faulty players are identical, then all non-faulty
players decide on that value. I.e., if pi = p∗ for all non-faulty players i, then p∗i = p∗

for all non-faulty players i.

We remark that either one of these properties is trivial to achieve on their own (agreement
by having all non-faulty processors always output “0”, and validity by having each processor
i output p∗i = pi); the tricky part is to guarantee that they both hold in tandem.

The Byzantine agreement problem was first formulated by Lamport, Pease, and Shostak
[4, 2], and was motivated by fault-tolerant systems where a set of independent processors are
required to come to an exact agreement in presence of faulty processors. Examples include
synchronization of internal clocks or agreement on sensor readings. From a cryptographic
perspective, Byzantine agreement is a central primitive used within multi-party computation
protocols, where now a certain fraction of adversarial processors may be actively trying to
prevent agreement among the honest processors.

1.1 Broadcast

A broadcast channel is (as one might expect) a channel to which any player may send a
value which is then received by all other players (we also assume that players can tell which
player sent the value). Note that if a broadcast channel is available, then the Byzantine
agreement problem is trivial (for t < n/2): each player simply broadcasts their value pi and
then honest players decide on the majority value. Unfortunately, most real-world systems
(at best) only guarantee “point-to-point” communication as we have described above.

26-1

However, it is worthwhile to consider broadcast as a functionality (rather than as simply
an atomic primitive); doing so, we come up with the following definition: Assume an n-party
network with point-to-point channels, as above. We now assume a distinguished party s
within this network, called the sender, who initially holds an input value ps. As before, we
will allow up to t parties within the network (the dealer possibly included) to be faulty.
The processors in the network then run a protocol which results in each non-faulty player
deciding on a value p∗i . In addition to requiring that the protocol terminate, a broadcast
protocol also satisfies the following (as long as no more than t players in total are faulty):

Agreement All non-faulty players decide on the same value; i.e., p∗

i = p∗j for all non-faulty
i, j.

Correctness If the dealer is honest, then all non-faulty players decide on ps. I.e., if the
dealer is non-faulty then p∗i = ps for all non-faulty players i.

(Note that broadcast may now be implemented by a protocol, rather than only by an atomic
“broadcast channel”.) We have noted above that if we can achieve broadcast and t < n/2,
then we can achieve Byzantine agreement. In fact, the opposite direction also holds (for any
t, although as defined above Byzantine agreement is not meaningful when t ≥ n/2), as the
following protocol shows: first, the dealer sends his value ps to each other player (using a
point-to-point channel). Next, the players run a Byzantine agreement protocol and decide
on the result. It is not hard to see that agreement and correctness both hold.

Because of this equivalence, we are free to focus on either Byzantine agreement or
broadcast. In the remainder of this lecture, we focus on broadcast. A key results in this
area is the following, which we will prove in this and the next lecture:

Theorem 1 Broadcast (or Byzantine agreement) is possible iff t < n/3 (or t ≥ n − 1,
which is a trivial case). The possibility result holds even for computationally-unbounded
adversaries who coordinate the actions of all faulty players. The impossibility result holds
even for computationally-bounded adversaries (as long as the adversary is allowed to run
for essentially the same amount of time as honest processors), assuming no prior set-up
phase is allowed.

This result was first proved in [4]. A few comments are in order:

1. We have not yet said anything about protocol efficiency, and indeed the original
protocol for Byzantine agreement (when t < n/3) ran in exponential time. Of course,
we ultimately want a protocol that runs in polynomial time. Since the initial work of
[4, 2], much further work has focused on constructing polynomial-time protocols, and
then optimizing the number of rounds/messages/etc.

2. The remark at the end of the theorem will be discussed later in the lecture. As a
preview, note that one possibility for a set-up phase is to assume a PKI such that
each player i (including the faulty ones) has established a public/secret key pair
(PKi, SKi) for a digital signature scheme, with the same value PKi known to all
other players.

26-2

3. Other work in this area has focused on what can be achieved within different commu-
nication models (say, where a channel does not necessarily exist between every pair
of players, etc.).

2 The Impossibility Result

In this section, we prove the “only if” part of the theorem; i.e., we prove:

Theorem 2 Broadcast (and hence Byzantine agreement) is not achievable when the number
of faulty player t satisfies n− 1 > t ≥ n/3. (Note that t ≥ n− 1 implies that the number of
honest players is at most 1, in which case the whole problem becomes trivial.)

Proof We first focus on the case n = 3, t = 1, and then prove the case for general n. Call
the sender s and label the two other players “1” and “2”. In the real network, each of these
players is connected with the other two. But imagine now that we make copies s ′, 1′, 2′ of
each of these players and arrange them in a hexagon as follows:

s ↔ 1 ↔ 2
l l
2′ ↔ 1′ ↔ s′

Now, assume toward a contradiction that we have some (possibly randomized) protocol P
for broadcast. This protocol completely specifies what each player s, 1, 2 should do given its
initial input (in the case of s) and the messages it receives from the other parties. Consider
the case when the players above execute the protocol honestly, communicating as in the
diagram, but where s has input 0 and s′ has input 1. We claim the following:

1. Let us look at things from the point of view of players 1 and 2. The key is to
realize that, from their perspective, the combined actions of s and s′ represent possible
adversarial activity of the sender s in the original network. (In particular, the “real”
sender s in the original, 3-player network can simulate the actions of 1′, 2′, s with
input 0, and s′ with input 1.) Furthermore, from this viewpoint players 1 and 2 are
acting completely honestly. Since, by assumption, P is a protocol for broadcast, we
must then have that 1 and 2 output the same value. Letting p1 (resp., p2) represent
the output of player 1 (resp., 2), we then have p1 = p2.

2. Now, look at things from the point of view of players s and 1. Here, the key is to
realize that, from their perspective, the combined actions of players 2 and 2 ′ represent
possible malicious activity of player 2 in the original network. (Again, a malicious
player 2 in the “real”, 3-player network can simulate the actions of 2, 2′, s, s′.) But,
again, players s and 1 are acting completely honestly. Since P is a broadcast protocol,
it must be the case that player 1 outputs the initial input value of s. That is, p1 = 0.

3. However, an exactly symmetric argument with respect to s′, 2 shows that player 2
must output the initial input of s′; i.e., p2 = 1.

The above give the desired contradiction (namely, we require p1 = p2 but p1 = 0 while
p2 = 1), showing that the claimed broadcast protocol cannot exist.

26-3

We now prove the claim for the case of n a multiple of 3 (although a small modification
of what we say extends to give a proof for arbitrary n). We do so by reducing in to the
case n = 3. Namely, we show that if there exists a broadcast protocol for n ≤ 3t then we
can construct a broadcast protocol for n = 3, t = 1.

So, assume we have a broadcast protocol P for n players (n a multiple of 3) and secure
against t malicious parties, with t ≥ n/3. We assume for simplicity that player 1 is the
sender. Construct broadcast protocol P ′ for n′ = 3 players 1′, 2′, 3′ as follows (again,
player 1′ will be the sender): The basic idea is that player 1′ will simulate players 1 through
n/3; player 2′ will simulate players n/3 + 1 through 2n/3; and player 3′ will simulate
players 2n/3 + 1 through n. In more detail, focusing on player 1′ (actions of players 2′

and 3′ are defined similarly): If player 1′ has input b, it runs player 1 (internally) with
input b. Whenever players i, j ∈ [1, n/3] in protocol P want to send a message to each
other, player 1′ simply simulates this internally. When player i ∈ [1, n/3] wants to send a
message m to player j ∈ [n/3 + 1, 2n/3], player 1′ sends the message (i, j,m) to player 2′.
When j ∈ [2n/3+1, n], player 1′ sends a similar message to player 3′. When player 1′ receives
a message (j, i,m) from player 2′ with j ∈ [2n/3, n], player 1′ internally passes message m
to (internal) player i “from” player j. When such a message comes from player 3 ′, player 1′

acts appropriately. Players 2′ and 3′ output whatever is output (internally) by any of the
players they are simulating.

Assume P is secure for t ≥ n/3. We then claim that P ′ is secure for t = 1. To see this,
note that the actions of any one compromised player in protocol P ′ can be simulated by the
compromise of at most n/3 players in protocol P (namely, the n/3 players in P assigned
to the corrupted player in P ′). Consider the case when 1′ is compromised in P ′, and hence
players 1 through n/3 are compromised in P . Since agreement holds for P , we know that
players n/3 + 1 through n all output the same value, and so players 2′ and 3′ will output
the same value and agreement holds for P ′. Next, consider the case when 2′ is compromised
in P ′, corresponding to compromise of players n/3 + 1 through 2n/3 in P (the situation
is analogous when player 3′ is compromised). Since correctness holds for P , we know that
players 2n/3+1 through n output the initial input value of player 1. Since this latter value
is the same as the initial input value of player 1′, we have that player 3′ outputs the initial
input value of player 1′ and hence correctness holds for P ′.

In the next lecture, we will show a protocol for Byzantine agreement/broadcast for n
players and t < n/3 faulty players.

3 “Authenticated” Broadcast

We now return to the remark about circumventing the impossibility result proved above if
we allow an initial “set-up” phase. In particular, we will assume a PKI has been established
such that each player i has a public-/secret-key pair (PKi, SKi) and (i, PKi) is known to
all other players. (We stress that every player holds the same PKi for player i — this
is crucial.) We will also assume a computationally-bounded adversary who cannot forge a
signature (with non-negligible probability) on any previously-unsigned message with respect
to the public key of any of the honest players.

First, it is worthwhile to see where the proof of the impossibility result from the previous

26-4

section breaks down in this case. Looking at the case n = 3, t = 1, we see that a crucial ele-
ment in the proof is the ability of corrupted players to simulate the actions of non-corrupted
players (for example, we required that a malicious s can simulate the actions of “honest”
1′ and 2′). But when the players might sign messages (and we assume a computationally-
bounded adversary) it is no longer necessarily possible for corrupted players to simulate the
actions of honest players and the proof break down.

We now show a protocol for “authenticated” broadcast when a PKI is established, as
described above. Our description of the protocol is based on [1]. Again, we will assume that
player 1 is the sender. We first introduce some notation: a message is called (v, i)-authentic
for j if it has the form (v, p1, σp1

, . . . , pi, σpi
) where v ∈ {0, 1}, p1 = 1, all pi are distinct,

j 6 in{p1, . . . , pi}, and, for all i, the signature σpi
is a valid signature with respect to PKpi

of
the string (v, p1, σ1, . . . , pi−1, σi−1). When it is obvious which player j we are talking about,
we will simply call this a (v, i)-authentic message. The protocol proceeds as follows:

Round 1: Party 1 signs its input v and sends (v, 1, σ1) to all parties. (Note that when
player 1 is honest, this message is (v, 1)-authentic for all j 6= 1.)

Rounds 2 through n − 1: Each player j acts as follows in round i: for each v ∈ {0, 1},
if player j has received a (v, i − 1)-authentic message (v, p1, σp1

, . . . , pi−1, σi−1) in the
previous round, then it signs this message and sends (v, p1, σp1

, . . . , pi−1, σi−1, j, σj)
to all other players.

Note that each player sends at most 2 messages per round to all players (one for each
possible value of v), even if it has received many different (v, i−1)-authentic messages.

Conclusion: Each party j decides on its output as follows:

If party j has ever received both a (0, i)-authentic message and a (1, i′)-authentic
message (where possibly i = i′), then it outputs the default value 0. (Note that
when this occurs the sender must be cheating [assuming the security of the signature
scheme], since it has issued signatures on two different values.)

If player j has ever received a (v, i)-authentic message, but never received a (v̄, i ′)-
authentic message, then it outputs v.

If player j has never received a (v, i)-authentic message for any value of v, then it
outputs the default value 0. (Again, this situation implies that the sender must be
dishonest, since it was supposed to send out an authentic message in round 1.)

We claim that the above is a secure broadcast protocol. Correctness is easy to see: if the
sender is honest and has initial input v, then every player receives a (v, 1)-authentic message
in the first round; assuming the security of the signature scheme, players will never receive
a (v̄, i)-authentic message (since, in particular, this would require forging the signature of
player 1) and so all honest players will output v.

Agreement is a bit more difficult to verify. The first thing we may notice is that if
any honest player j receives a (v, i)-authentic message with i < n − 1, then every honest
player j′ will receive a (v, i + 1)-authentic message in the following round (because j will
send such a message to everyone). It only remains to see what happens when an honest

26-5

player receives a (v, n − 1)-authentic message in the last round. In this case, the fact that
this message is (v, n − 1)-authentic means that every other player has signed this message,
and so every honest player has observed a (v, i)-authentic message in some previous round
(again, assuming the security of the signature scheme so that the signatures of honest
players cannot be forged). Putting this together, we have that if any honest player has seen
a (v, i)-authentic message by the end of the protocol, then every honest player has seen a
(v, i′)-authentic message by the end of the protocol. It is thus clear that agreement holds.

References

[1] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge Uni-
versity Press, 2004.

[2] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Trans.
Program. Lang. Syst., 4(3): 382–401 (1982).

[3] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[4] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2): 228–234 (1980).

26-6

CMSC 858K — Advanced Topics in Cryptography May 6, 2004

Lecture 27

Lecturer: Chiu Yuen Koo Scribe(s):
Omer Horvitz Zhongchao Yu
John Trafton Kavitha Swaminathan

1 Introduction

In a previous lecture, we defined the Byzantine agreement/broadcast problems and showed
that there is no protocol solving these problems when the fraction of corrupted players is
1/3 or larger. Today, we prove the converse by showing a protocol for broadcast (and hence
Byzantine agreement; cf. the previous lecture) when the fraction of corrupted players is
less than 1/3. The protocol we will show is called the Exponential Information Gathering
(EIG) protocol, and was essentially the first known protocol for this task. (See [2, 4, 1, 3].)
We stress at the outset that the protocol is not very efficient — as the name suggests, its
complexity is exponential in the number of players — but it forms an important feasibility
result. Since the protocol was introduced, much work has focused on improving various
parameters of the protocol, and fully polynomial Byzantine agreement/broadcast protocols
with optimal resilience are now known.

2 The EIG Protocol

Let n be the number of players, and let t be the upper-bound on the number of malicious
players (for simplicity, let the number of faults be exactly t). We show how to achieve
broadcast when t < n/3. To gain intuition, we describe how the protocol works for the
case of four players, when only one is assumed to be faulty. Let the players be denoted
A,B,C,D, and assume the sender A holds a value v. A begins by sending v to B,C,D, who
proceed to send the value they received from A to each other. At this point, each player has
a value that it received from A and values that the other two players report to have received
from A. Each player maintains this information in a tree, as depicted in Fig. 1. Each player
i ∈ {B,C,D} stores the value it received from A in the root of its tree, and the value that
node j ∈ {B,C,D} \ {i} says it received from A in node Aj. Each player i ∈ {B,C,D}
decides on the majority value of the latter three values (i.e., the values stored at the leaves
of the tree). If no majority value exists, then the players decide on some default value v0.

We proceed with the analysis: if A is non-faulty then one of B,C,D is faulty; without
loss of generality, assume it is B. Looking at the trees maintained by C and D, we see that
in each of their trees the value stored at leaves AC and AD is exactly v, the initial input
of the sender A. Thus, regardless of what B sends to C and D (i.e., regardless of what
appears at leaf AB in C’s tree and lead AB in D’s tree), C and D will decide on v, ad
required.

On the other hand, if A is faulty then B,C, and D are not faulty. Let vb, vc, vd denote
the values that A sent to B,C,D, respectively. Looking at the trees maintained by B,C,
and D, we see that each will have the value vb stored at leaf AB, the value vc stored at leaf

27-1

V(A)

V(AB) V(AC) V(AD)

Figure 1: Information Gathering Tree for n = 4, k = 1.

AC, and the value vd stored at leaf AD. Thus, they will all decide on some common value
(whatever that value may be) as required.

More generally, assume the network consists of n players A,B,C, . . ., of which t < n/3
are faulty (equivalently, n > 3t). The EIG algorithm, described below, involves the main-
tenance of a tree of height t (i.e., having t+1 levels) by each player. The root of the tree is
labeled with the sender A. Every internal node labeled ` (where ` is a string) has one child
for each player s that does not appear in `; the label of this child is `s, the concatenation
of the label of the parent with the name of the aforementioned player. The node labeled
`s is said to correspond to player s. For example, if we have players A,B,C,D,E, F,G,
then the root has children AB,AC,AD,AE,AF,AG; the node labeled AE has children
AEB,AEC,AED,AEF,AEG; and nodes AEF,AEG are said to correspond to F,G, re-
spectively.

The protocol proceeds in t + 1 rounds. In the first round, A sends its input v to all
other players. Each player stores the value it received from A in the root of its tree. In each
subsequent round, each player (except A, who no longer needs to take part in the protocol)
broadcasts the most-recently-filled level of its tree. Upon receiving these messages, each
player P fills the next level of its tree by storing at node `X the value that player X claims
to have stored at node ` in its own tree.1 Intuitively, player P stores in node A · · · Y X the
value that “X says that Y says . . . that the sender A said”. We refer to the value stored at
node ` in P ’s tree as vP (`). A generic information-gathering tree is depicted in Fig 2 (the
identity of the particular player maintaining the tree is omitted).

After completion of the t + 1 rounds, we define a reduced value for each node. For a
player P and a node labeled σ, the reduced value v ′

P (σ) is defined as follows:

• If σ is a leaf, then v′

P (σ) = vP (σ).

• If σ is not a leaf, then v′

P (σ) is the majority value of the reduced values of its children
(in P ’s tree). If no majority exists, v ′

P (σ) is assigned the default value v0.

Each player computes and decides on the reduced value of the root of its tree.

1
Note: this includes messages that player P sends “to itself”. Of course, no such message is actually sent

but P can certainly simulate the sending of such a message.

27-2

V(A)

The sender said

V(AB) V(AC) V(AZ)

B said
the sender said

C said
the sender said

V(ABC)

C said
B said

the sender said

V(ACB)

B said
C said

the sender said

V(AZB)

B said
Z said

the sender said

V(ABCZ)

Z said
C said
B said

the sender said

...
Z said

the sender said

...

...

Figure 2: A Generic Information Gathering Tree.

We now prove the correctness of this protocol. Each (honest) player maintains a tree
with t + 1 levels (numbered 1 through t + 1), and each node at level k has n − k children.
It follows that in the tree maintained by each player, every internal node has at least
n − t ≥ 2t + 1 children (of which at most t are faulty). The correctness of the protocol
follows from the following lemmas:

Lemma 1 If a node σ corresponds to a non-faulty player, then vP (σ) = vQ(σ) for all
non-faulty players P,Q.

Proof Let σ = σ′R, where R is a non-faulty player. The lemma follows easily from the
fact that R sends the same value vR(σ′) to all other players. (Note that the lemma holds
even when R ∈ {P,Q}.)

Lemma 2 If a node σ corresponds to a non-faulty player, then there is a value v such that
v′

P (σ) = vP (σ) = v for any non-faulty player P .

27-3

Proof By backward induction on the level of σ in the information-gathering tree.

Base case: Here, σ is a leaf. Then v′

P (σ) = vP (σ) for any honest P by the definition of
reduced values. Moreover, Lemma 1 shows that for any non-faulty player Q we have
vP (σ) = vQ(σ), and hence v′

Q(σ) = v′

P (σ) as well.

Inductive step: Assume the claim holds for all nodes at level k+1, and consider a node σ
at level k. Lemma 1 shows that all non-faulty processes P have the same value vP (σ).
Call this value v. Each non-faulty process will send v to all other processes in round
k + 1, so vQ(σP) = v for all non-faulty P,Q. The inductive hypothesis now implies
that v′

Q(σP) = vQ(σP) = v for all non-faulty P,Q. Since a majority of the children
of σ are non-faulty (by the argument above), this implies that v ′

Q(σ) = v = vQ(σ) for
all non-faulty Q.

If A is honest, the above lemma immediately implies that all non-faulty players decide
on the sender’s initial value. All that is left to be shown is that all non-faulty players reach
agreement when the sender is faulty. We prove a slightly stronger lemma:

Lemma 3 If all paths from a node σ to a leaf contain at least one node corresponding to a
non-faulty player, then v′

P (σ) = v′

Q(σ) for all non-faulty players P,Q.

Proof By backward induction on the level of σ in the information-gathering tree.

Base case: σ is a leaf. The claim reduces to Lemma 2.

Inductive step: Assume the claim holds for all nodes at level i + 1, and consider a node
σ at level i.

• If σ corresponds to a non-faulty node, the claim reduces to Lemma 2.

• If σ corresponds to a faulty node, consider a child σ ′ of σ. It must be the case that
all paths from σ′ to a leaf contain at least one node corresponding to a non-faulty
player. By the induction hypothesis, v ′

P (σ′) = v′

Q(σ′) for all non-faulty players
P,Q. By the definition of the reduced value, it follows that v ′

P (σ) = v′

Q(σ) too.

Notice that every path from the root of the information-gathering tree to a leaf contains
a node corresponding to a non-faulty player, because the length of any such path is t + 1
and there are at most t faulty players. Applying Lemma 3 to the root completes our proof.

We sum up the result with the following theorem:

Theorem 4 (n > 3t is sufficient for Byzantine agreement) There exists a protocol that
achieves Byzantine agreement when n > 3t.

27-4

References

[1] A. Bar-Noy, D. Dolev, C. Dwork and R. Strong. Shifting Gears: Changing Algorithms
on the Fly to Expedite Byzantine Agreement. In Proc. 6th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pp. 42–51, 1987.

[2] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Trans.
Program. Lang. Syst. 4(3): 382–401 (1982).

[3] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[4] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM 27(2): 228–234 (1980).

27-5

CMSC 858K — Advanced Topics in Cryptography May 11, 2004

Lecture 28

Lecturer: Jonathan Katz Scribe(s):
Nagaraj Anthapadmanabhan
Alvaro Cardenas

1 Introduction

In a previous class (Lecture 25), we showed how to construct an identification scheme
which is secure against a passive adversary using an Honest-Verifier Zero-Knowledge Proof
of Knowledge (HVZK-PoK). We also showed that it is possible to construct an Identifica-
tion Scheme secure against an active adversary using a Witness Indistinguishable Proof of
Knowledge (WI-PoK). In this lecture, we will construct efficient proof systems with these
properties, and thus efficient identification schemes, based on the discrete logarithm as-
sumption. We will also see how the resulting identification schemes can be converted into
signature schemes.

2 Security Against Passive Adversaries

We refer to Lecture 25 for the definitions of identification schemes and their security against
passive adversaries. We also refer there for a proof that an identification scheme can be con-
structed using any one-way function f and an HVZK-PoK of a value x such that f(x) = y
(where y is included in the prover’s public key). Here, we merely show a specific (efficient)
HVZK-PoK for the particular case when the one-way function f is the discrete exponen-
tiation function (and the hardness of inverting f is therefore equivalent to the discrete
logarithm assumption that we have seen previously). To establish some notation, let � be
a cyclic group of prime order q and let g be a fixed generator of � . We will assume that

� , g, and q are publicly known. If y = gx then we let x
def
= logg y.

The setup is as follows (cf. Lecture 25): the verifier knows the prover’s public key y, while
the prover has a secret key x such that y = gx. The following protocol due to Schnorr [4]
allows the prover to prove to the verifier that he indeed knows x:

� , q, g, y
P(x) V

r ← � q
A = gr

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−
c← � q

b = (cx + r) mod q
−−−−−−−−−−−−−−−→

ycA
?
= gb

Let us first show that the above scheme is correct. If both players act honestly and
y = gx, then we have:

gb = gcx+r = gcxgr = ycA,

28-1

where we use the fact that the order of the group is q, and so exponents are reduced
modulo q (i.e., gcx+r = gcx+r mod q). We now prove that the above protocol satisfies the
desired properties.

Theorem 1 The protocol above is both honest-verifier zero-knowledge as well as a proof of
knowledge.

Proof We prove that the protocol is honest-verifier zero-knowledge by showing a simu-
lator. The simulator proceeds as follows: it first chooses random c, b ∈ � q and then sets
A = gby−c. It outputs the transcript (A, c, b). We claim that the distribution of transcripts
as output by this simulator is identical to the distribution of transcripts of real executions
of the protocol (with an honest verifier). To see this, note that c is uniform in � q in both
cases. Furthermore, the distributions of both real and simulated transcripts have A uniform
in the group, independent of c. (This is clear for real transcripts since g is a generator and
r is chosen uniformly at random from � q, independent of c. For simulated transcripts, this
is true since the value gb is uniform in � and hence — for any c — the value gby−c is
uniform in � .) Finally, in both cases b is completely determined by A and c as the unique
value satisfying b = (c · logg y + r) mod q (note that logg y is well-defined, even if we cannot
compute it efficiently). This completes this part of the proof.

To show that the protocol is a proof of knowledge, one needs to show a knowledge
extractor satisfying the technical conditions hinted at (but not defined formally) in earlier
lectures. Assume an adversarial prover who has some probability λ of successfully executing
the protocol for a particular value of y. Note that this probability is only over the random
challenge c sent in the second round. Before describing the extractor, we define some
terminology: say the adversary succeeds on challenge c (assuming A is already fixed) if
the adversary responds to this challenge with a b such that ycA = gb. Otherwise, say the
adversary fails. We construct the extractor as follows:

Receive some A from the adversary
choose c1 ← � q and send c1 to the adversary
if the adversary fails on c1, halt
otherwise, for i = 1 to q do:

choose c2 ← � q \ {c1}
if the adversary succeeds on c2, compute logg y as described below and halt

if gi = y, output i and halt

To complete the description, we describe how to compute logg y when the extractor finds
c1, c2 such that the adversary succeeds for both. In this case, we have A, c1, c2, b1, b2 such
that yc1A = gb1 and yc2A = gb2 . Dividing, we obtain:

yc1−c2 = gb1−b2 ,

and hence logg y = (b1 − b2)(c1 − c2)
−1 mod q. Note that we can efficiently compute the

latter since we have b1, b2, c1, c2, q, and c1 6= c2 so (c1 − c2)
−1 exists.

Analyzing the extractor in its totality, we see that it computes the correct value for
logg y whenever the adversary succeeds on c1. By assumption, this occurs with probability
exactly λ. The only thing left to argue is that the extractor runs in expected polynomial

28-2

time. To see this, we consider two possibilities: λ > 1/q and λ = 1/q (if λ < 1/q then
λ = 0 and the proof is easy). In the first case, say λ = t/q for some integer t > 1. Now,
the probability that the extractor enters the loop (i.e., the last four lines) is λ = t/q. The
expected number of iterations of the loop, once reached, is (t−1

q
)−1 = q/(t − 1). So the

expected total running time of the extractor is

poly + poly ·
t

q
·

q

t− 1
= poly + poly.

(Where poly in the above refers to some arbitrary polynomial in some implicit security
parameter which determined the size of q.) In case λ = 1/q the expected number of
iterations of the loop is (at worst) q; however, the probability of entering the loop in the
first place is 1/q and so the expected total running time is:

poly + poly ·
1

q
· q = poly + poly.

In either case, then, the extractor runs in expected polynomial time.

3 Security Against Active Adversaries

As discussed in Lecture 25, to obtain security against active adversaries we can use a
witness-indistinguishable proof of knowledge. Recall also that this only helps if there is
more than one witness to speak of; for this reason we will now let the prover’s secret be a
representation of some value y with respect to two generators g, h. In more detail, if g, h ∈ �
are generators we say that (x1, x2) is a representation of y if gx1hx2 = y. Note that for any
y ∈ � and any x1 ∈ � q there is a unique x2 ∈ � q such that (x1, x2) is a representation of y.
In other words, there are q possible different “witnesses” or representations.

Whereas Schnorr’s protocol is a proof of knowledge of the discrete logarithm of y (with
respect to g), the following protocol due to Okamoto [3] is a proof of knowledge of a
representation of y (with respect to g, h).

� , q, g, h, y
P(x1, x2) V

r1, r2 ← � q
A = gr1hr2

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−
c← � q

b1 = (cx1 + r1) mod q

b2 = (cx2 + r2) mod q
b1, b2

−−−−−−−−−−−−−−−→
Ayc ?

= gb1hb2

Let us first verify correctness. If gx1hx2 = y then we have:

Ayc = gr1hr2(gx1hx2)c = gr1+cx1hr2+cx2 = gb1hb2 .

We now prove the desired properties of this protocol

28-3

Theorem 2 The protocol above is a witness indistinguishable proof of knowledge.

Proof The proof of knowledge property is easy to show, along the lines of the proof for
the case of Schnorr’s protocol. Without going through the details again, we simply show
how to extract a representation from two accepting transcripts sharing the same value of A.
Thus, assume we have values A, c, c′, b1, b2, b

′

1, b
′

2 such that Ayc = gb1hb2 and Ayc′

= gb′

1hb′

2

but c 6= c′. Dividing, we obtain yc−c′

= gb1−b′

1hb2−b′

2 and so (
b1−b′

1

c−c′ ,
b2−b′

2

c−c
) is a representation

of y (again, we use the fact that c− c′ 6= 0 so that the necessary inverse exists).
It remains to argue that the protocol is witness indistinguishable. To prove this, we

show that for any adversarial verifier V∗ and any two representations (x1, x2), (x′

1, x
′

2), the
distribution on the transcripts of an execution of the protocol when the prover uses the
first representation is identical to the distribution on the transcripts of an execution of the
protocol when the prover uses the second representation. First note that the distribution
over the first message A sent by the prover is independent of the representation being
used. Next, the challenge c may be viewed as a deterministic function of A (since we can
imagine fixing the random coins of the dishonest verifier — note that c may be chosen using
some arbitrary (poly-time) function, since the adversary may not be following the honest
verification procedure), and so the distribution on c is each case will be identical.

It only remains to argue about the final message b1, b2. Conditioned on some fixed
values of A, c, when the prover is using the first representation this message is distributed
according to:

b1 = cx1 + r1

b2 = cx2 + r2,

where r1, r2 are uniformly distributed over representations of A. (Another way to view this
distribution is one in which r1 is chosen uniformly from � q and then r2 is the unique value
such that (r1, r2) is a representation of A.) It is not hard to see that this is equivalent
to saying that b1, b2 are uniformly distributed over representations of Ayc. (Namely, b1 is
uniform in � q and then b2 is the unique value such that (b1, b2) is a representation of Ayc.)
Conditioned on the same values of A, c, when the prover is using the second representation
the final message is distributed according to:

b1 = cx′

1 + r1

b2 = cx′

2 + r2,

where r1, r2 are uniformly distributed over representations of A. But then b1, b2 are again
distributed uniformly over representations of Ayc.

The above discussion shows that the protocol is perfectly witness indistinguishable.

The above theorem does not quite allow us to directly apply the results from Lecture 25
and claim that Okamoto’s scheme is an identification scheme secure against active adver-
saries. (If we were directly following the paradigm of Lecture 25, then we would have the
prover’s public key be y1, y2 and the prover would give a witness-indistinguishable proof
of knowledge of either logg y1 or logg y2.) However, the same ideas behind the proof of
Theorem 2, Lecture 25 can be used to prove this result. We assume the reader is familiar
with that proof, and just sketch an outline of the proof here.

28-4

Theorem 3 The protocol above gives an identification scheme secure against active adver-
saries.

Proof (Sketch) Given an active adversary A attacking the scheme, we will use this
adversary to compute logg h (not logg y or something similar as in the case of Schnorr’s
protocol!). We do this as follows:

1. Given input g, h we choose random x1, x2 and set y = gx1hx2 . The public key y is
given to A and the secret key is (x1, x2). Note that we know a perfectly valid secret
key for y!

2. We then interact with A, who will be acting as a dishonest verifier. Note that we can
easily simulate the actions of a prover (without any rewinding or any difficulty) since
we know a valid representation of y.

3. Once A is done with the previous stage, it then tries to impersonate the prover. If
it succeeds, we run the knowledge extractor for the proof of knowledge to extract a
representation (x′

1, x
′

2) for y.

4. Assuming we have extracted some (x′

1, x
′

2) as above, the key claim is that with all
but negligible probability we have (x′

1, x
′

2) 6= (x1, x2). Why should this be the case?
Well, since the protocol is perfectly witness indistinguishable, A has no idea (in an
information-theoretic sense) which representation of y we know, and all valid rep-
resentations are equally likely from A’s point of view. Since there are q possible
representations, (x′

1, x
′

2) = (x1, x2) with probability 1/q, which is negligible.

5. Assuming we have extracted a representation (x′

1, x
′

2) different from (x1, x2), we can
compute logg h by noting that gx1hx2 = gx′

1hx′

2 and so

gx1−x′

1 = hx′

2
−x2 .

Thus, logg h = (x1 − x′

1)(x
′

2 − x2)
−1 mod q. (Note that since the representations are

different we must have x′

2 6= x2 mod q.)

6. Putting everything together, if A succeeds with non-negligible probability, then we
compute logg h with non-negligible probability.

4 From Identification Schemes to Signature Schemes

In this section, we show how any identification scheme of a certain form can be transformed
into a signature scheme in the random oracle model. Assume a 3-round identification scheme
in which the challenge sent by an honest verifier in the second round is generated by picking
an element uniformly at random from some space. (The technique extends for multi-round
protocols but we will deal with the 3-round case here since this is most common and leads
to the most efficient signature schemes.) Let A, c, b denote the messages sent in the first,

28-5

second, and third rounds, respectively. We transform this protocol into a signature scheme
in the following way: the signer’s public key is the public key of the identification scheme
and the secret key is the secret key of the identification scheme. To sign message m, the
signer begins by generating an initial message A just as in the identification scheme. The
signer then computes c = H(A,m) where H is a cryptographic hash function modeled as
a random oracle. Finally, the signer computes the correct response b to this “challenge” c
(using the secret key and its knowledge of how A was generated) and outputs the signature
(A, b). Anyone can verify this signature on message m by computing c = H(A,m) and then
checking whether (A, c, b) is a valid transcript of the identification protocol with respect to
the given public key. Applied to the Schnorr identification protocol, we obtain:

PK = (� , q, g, y)
SignSK(m) (where SK = x = logg y) V(PK,m)

r ← � q;A = gr

c = H(A,m); b = cx + r
A, b

−−−−−−−−−−−−−−−→
c = H(A,m)

ycA
?
= gb

The general transformation described above (i.e., for an arbitrary identification scheme)
was first proposed by Fiat and Shamir [2] and is known as the Fiat-Shamir transformation.
It has since been analyzed rigorously in numerous works. We state the following without
proof, and refer the interested reader to [1] for more details and a full proof.

Theorem 4 When the Fiat-Shamir transformation is applied to any identification scheme
(of the appropriate form) which is secure against passive attacks, the resulting signature
scheme is existentially unforgeable under adaptive chosen-message attacks in the random
oracle model.

The above theorem is quite nice, in that it shows that an identification protocol secure
against a very weak form of attack (i.e., a passive attack) suffices to give a signature scheme
which is secure in (essentially) the strongest sense.

References

[1] M. Abdalla, J. H. An, M. Bellare, C. Namprempre. From Identification to Signatures via
the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security.
Eurocrypt 2002.

[2] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. Crypto ’86.

[3] T. Okamoto. Provably-Secure and Practical Identification Schemes and Corresponding
Signature Schemes. Crypto ’92.

[4] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. Crypto ’89.

28-6

