CMSC 858K — Advanced Topics in Cryptography January 27, 2004

Lecture 1

Lecturer: Jonathan Katz Scribe(s): Jonathan Katz

1 Introduction to These Notes

These notes are intended to supplement, not replace, the lectures given in class. In particu-
lar, only the technical aspects of the lecture are reproduced here; much of the surrounding
discussion that took place in class is not.

2 Trapdoor Permutations

We give two definitions of trapdoor permutations. The first is completely formal, and
maps well onto the (conjectured) trapdoor permutations that are used in practice. The
second 1is slightly less formal, but is simpler to use and somewhat easier to understand.
Generally speaking, however, proofs of security using the second of the two definitions can
be easily modified to work for the first definition as well. (Stronger definitions of trapdoor
permutations are sometimes also considered; see [1, 2] for some examples.)

We begin with a syntactic definition, and then give a concrete example. Before giving
the definition we introduce two pieces of notation. First is the abbreviation PPT which
stands for “probabilistic, polynomial-time”. This, of course, refers to algorithms which may
make random choices during their execution but which always terminate in a polynomial
number of steps. This begs the following question: polynomial in what? To deal with this,
we introduce the notion of a security parameter k which will be provided as input to all
algorithms. For technical reasons, the security parameter is given in unary and is thus
represented as 1*. In some sense, as we will see, a larger value of the security parameter
results in a “more secure” scheme. (Hopefully, the concrete example that follows will give
some more motivation for the purpose of the security parameters.)

Definition 1 A trapdoor permutation family is a tuple of PPT algorithms (Gen, Sample,
Eval, Invert) such that:

1. Gen(1¥) is a probabilistic algorithm which outputs a pair (i,td). (One can think of i as
indexing a particular permutation f; defined over some domain D;, while td represents
some “trapdoor” information that allows inversion of f;.)

2. Sample(1%,) is a probabilistic algorithm which outputs an element z € D; (assuming
i was output by Gen). Furthermore, z is uniformly distributed in D;. (More formally,
the distribution {Sample(1*,4)} is equal to the uniform distribution over D;.)

3. Eval(1*,i,) is a deterministic algorithm which outputs an element y € D; (assuming
i was output by Gen and x € D;). Furthermore, for all i output by Gen, the func-
tion Eval(1¥,4,-) : D; — D; is a permutation. (Thus, one can view Eval(1¥ i,-) as
corresponding to a permutation f; mentioned above.)

1-1

4. Invert(lk ,td,y) is a deterministic algorithm which outputs an element = € D;, where
(i,td) is a possible output of Gen.

Furthermore, we require that for all k, all (i,td) output by Gen, and all z € D; we have
Invert(1¥,td, Eval(1¥,i,2)) = z. (This is our correctness requirement.) &

The correctness requirement enables one to associate Invert(lk,td7 -) with fi_l. However,
it is crucial to recognize that while, as a mathematical function, fl-_1 always exists, this
function is not necessarily efficiently computable. The definition above, however, guarantees
that it is efficiently computable, given the “trapdoor” information td (we will see below
that, informally, if the trapdoor permutation family is secure then fl-_1 is not efficiently
computable without td).

Before going further, we give as a concrete example one of the most popular trapdoor
permutations used in practice: RSA [3] (some basic familiarity with RSA is assumed; we
merely show how RSA fits into the above framework).

1. Gen(lk) chooses two random, k-bit primes p and ¢, and forms their product N = pq.
It then computes p(N) = (p — 1)(¢ — 1), chooses e relatively prime to ¢(N), and
computes d such that ed = 1 mod ¢(N). Finally, it outputs ((N,e), (N,d)) (note that
i in the definition above corresponds to (N, e) while td corresponds to (N,d)). The
domain Dy is just Z},. (We can also see how the security parameter k comes into
play: it determines the length of the primes making up the modulus N, and thus
directly affects the “hardness” of factoring the resulting modulus.)

2. Sample(1*, (N, e)) simply chooses a uniformly-random element from Z%. We noted in
class that it is possible to do this efficiently.

3. Eval(1¥,(N,e), x), where z € Z%;, outputs y = ¢ mod N.
4. Invert(1*, (N,d),y), where y € Z7, outputs © = y® mod N.

It is well-known that Invert indeed computes the inverse of Eval. Hence, RSA (as described
above) is a trapdoor permutation family.

2.1 Trapdoor (One-Way) Permutations

The definition above was simply syntactic; it does not include any notion of “hardness”
or “security”. However, when cryptographers talk about trapdoor permutations they al-
ways mean one-way trapdoor permutations. Informally, this just means that a randomly-
generated trapdoor permutation is hard to invert when the trapdoor information td is not
known. In giving a formal definition, however, we must be careful: what do we mean
by “hard to invert”? Roughly speaking, we will say this means that any “efficient” algo-
rithm succeeds in inverting a randomly-generated f; (at a random point) with only “very
small” probability. (Note that it only makes sense to talk about the hardness of inverting a
randomly-generated trapdoor permutation. If we fix a trapdoor permutation f; then it may
very well be the case that an adversary knows the associated trapdoor. A similar argument
shows that the point to be inverted must be chosen at random as well.) It should be no
surprise that we associate “efficient” algorithms with PPT ones. Our notion of “small” is
made precise via the class of negligible functions, which we define now.

1-2

Definition 2 A function € : N — RT U {0} is negligible if it is asymptotically smaller than
any inverse polynomial. More formally, this means that for all ¢ > 0 there exists an integer
N, such that:

N > N.= f(N)<1/N°.

&

We will now formally define the notion of being hard to invert, and thus formally define the
notion of one-way trapdoor permutation families.

Definition 3 A trapdoor permutation family (Gen,Sample, Eval,Invert) is one-way if for
any PPT A the following is negligible (in k):

Pr(i,td) « Gen(1%);y « Sample(1¥,i); 2 — A(1%,4,5) : Eval(1*,4,2) = 9. (1)

&

A few words are in order to explain Eq. (1), especially since this notation will be used
extensively throughout the rest of the semester. The equation represents the probability of
a particular event following execution of a particular experiment; the experiment itself is
written to the left of the colon, while the event of interest is written to the right of the colon.
Furthermore, individual components of the experiment are separated by a semicolon. We
use the notation “«+” to denote a randomized procedure: if S is a set, then “x « S” denotes
selecting uniformly at random from S; if A is a randomized algorithm, then “x « A(---)”
represents running A (with uniformly-chosen randomness) to obtain output x. Finally, in
an ezperiment (i.e., to the left of the colon) “=" denotes assignment (thus, e.g., if A is a
deterministic algorithm then we write z = A(---)); on the other hand, in an event (i.e., to
the right of the colon), “=" denotes a test of equality.

Thus, we may express Eq. (1) in words as follows:

The probability that Eval(1¥,4, z) is equal to y upon completion of the following
experiment: run Gen(1¥) to generate (i, td), run Sample(1%,) to generate , and
finally run A(1*,4,%) to obtain z.

Note also that Eq. (1) is indeed a function of k, and hence it makes sense to talk about
whether this expression is negligible or not.

From now on, when we talk about “trapdoor permutations” we always mean “a one-way
trapdoor permutation family”.

2.2 A Simplified Definition of Trapdoor Permutations

The above definition is somewhat cumbersome to work with, and we therefore introduce
the following simplified definition. As noted earlier, this definition does not map well (and
sometimes does not map at all) to the trapdoor permutations used in practice; yet, proofs
of security using this definition are (in general) easily modified to hold with regard to the
more accurate definition given above. (Of course, when giving proofs of security based on
trapdoor permutations, one should always be careful to make sure that this is the case.)
The following definition introduces two simplifying assumptions and one notational sim-
plification: our first assumption is that all D; are the same for a given security parameter

1-3

k. Furthermore, for a given security parameter k we will simply assume that D; = {0, l}k
(i.e., the set of strings of length k). We simplify the notation as follows: instead of referring
to an index i and a trapdoor td, we simply refer to a permutation f and its inverse f .
(Technically, one should think of f as a description of f, which in particular allows for
efficient computation of f; analogously, one should think of f~! as a description of (an effi-
cient method for computing) f~!. In particular, it should always be kept in mind that the
mathematical function f~! will not, in general, be computable in polynomial time without
being given some “trapdoor” information (which we are here representing by “f~'7).)

Definition 4 A trapdoor permutation family is a tuple of PPT algorithms (Gen, Eval, Invert)
such that:

1. Gen(1*) outputs a pair (f, f~!), where f is a permutation over {0, 1}*.

2. Eval(1*, f,z) is a deterministic algorithm which outputs some y € {0,1}* (assuming
f was output by Gen and z € {0,1}*). We will often simply write f(x) instead of
Eval(1*, f, z).

3. Invert(1%, f=1,y) is a deterministic algorithm which outputs some = € {0,1}* (as-
suming f~! was output by Gen and y € {0,1}*). We will often simply write f~*(y)
instead of Invert(1%, =1 y).

4. (Correctness.) For all k, all (f, f~!) output by Gen, and all z € {0,1}* we have
U f (@) ==

5. (One-wayness.) For all PPT A, the following is negligible:
Pri(f, f7") « Gen(1*);y — {0,1}*;0 — A(1*, f,y) : f(2) = y].

&

Given the above notation, we can just as well associate our trapdoor permutation family
with Gen (and let the algorithms Eval and Invert be entirely implicit).

References

[1] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[2] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications, Cambridge
University Press, to appear.

[3] R. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21(2): 120-126 (1978).

1-4

