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1 Summary

We had previously begun to analyze the Cramer-Shoup encryption scheme by looking at a
simplified version of the scheme that is secure only against non-adaptive chosen-ciphertext
attacks. These notes revisit this discussion, and then go on to show the full Cramer-Shoup
scheme that is secure against adaptive chosen-ciphertext attacks [1].

2 Simplified Cramer-Shoup

Recall the simplified Cramer-Shoup scheme:

• PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2)

• SK = (x, y, a, b)

• EPK(m): choose random r ∈
�

q; set C = (gr
1, gr

2, hr ·m, cr)

• DSK(u, v, w, e)

- If e 6= uavb then output ⊥ (i.e., invalid)

- else output w
uxvy

A proof of the following was given in the last lecture, but we briefly review it here.

Theorem 1 Under the DDH assumption, the simplified Cramer-Shoup Scheme is secure
against non-adaptive chosen-ciphertext attacks.

Proof Based on a ppt adversary A attacking the simplified Cramer-Shoup scheme, we
construct an adversary A′ as follows:

A′(g1, g2, g3, g4)

x, y, a, b←
�

q

PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2)
(m0,m1)← A(PK)
b← {0, 1}
b′ ← A(PK, g3, g4, gx

3gy
4 ·mb, ga

3gb
4)

output 1 iff b′ = b

Let Rand be the event that (g1, g2, g3, g4) are chosen from the distribution of random
tuples, and let DH be the event that they were chosen from the distribution of Diffie-Hellman
tuples. We have the following claims:
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Claim 2
∣

∣ Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ = negl(k).

Proof This follows from the DDH assumption and the fact that A′ is a ppt algorithm.

Claim 3 Pr[A′ = 1|DH] = PrA[Succ].

Proof By inspection, if (g1, g2, g3, g4) is a DH tuple, then g3 = gr
1 and g4 = gr

2 for some
(randomly distributed) r ∈

�
q. The claim follows.

Claim 4 |Pr[A′ = 1|Rand]− 1

2
| = negl(k).

Proof Since Pr[A′ = 1] = Pr[A = b], we will show that

|Pr[A = b | Rand]−
1

2
| = negl(k). (1)

In fact, we will show that this is true even if A has unlimited computational power (but
can only access the decryption oracle polynomially-many times). If A is all-powerful, we
may assume it knows logg1

g2; call this γ. From the public key, A learns that h = gx
1 gy

2 , or,
equivalently (taking discrete logarithms of both sides):

logg1
h = x + y · γ. (2)

This collapses the space of (x, y) into q possible pairs, one for each value of x ∈
�

q (and sim-
ilarly for y). The following sub-claims show that A cannot learn any additional information
about x and y using its decryption queries:

Sub-Claim Except with negligible probability, for all decryption queries (u, v, w, e) made by
A such that logg1

u 6= logg2
v, decryption returns ⊥.

Proof of Sub-Claim Before the first decryption query, the only thing A knows about a and
b from the public key is that c = ga

1gb
2. Taking discrete logarithms of both sides gives:

logg1
c = a + b · γ. (3)

Consider some ciphertext (u, v, w, e) submitted to the decryption oracle, where u = gr
1 and

v = gr′

2 with r 6= r′. For every z ∈ G, there is exactly one pair (a, b) ∈
�

q ×
�

q satisfying
Equation (3) and

z = uavb ⇔ logg1
z = ar + br′ · γ (4)

(this is because Equation 3 and Equation 4 are linearly independent in the unknowns a and
b). Therefore, from the point of view of A the value of uavb is uniformly distributed in G.
Furthermore, the ciphertext (u, v, w, e) is rejected unless e = uavb. Thus, the ciphertext
is rejected except with (negligible) probability 1/q (i.e., unless A happens to choose e
correctly).

Assuming the first decryption query of this form (i.e., with logg1
u 6= logg2

v) is rejected,

all A learns is that e 6= uavb. This eliminates one of the q possibilities for (a, b), but there
are still q − 1 possibilities remaining. Thus, the same argument as above shows that for
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the second decryption query of this form, the query will be rejected except with probability
(at most) 1/(q − 1). Continuing in this way, the nth decryption query of this form will be
rejected except with probability (at most) 1/(q − n + 1). Thus, the probability that one of
these queries is not rejected is at most n/(q − n + 1). Since q is exponential in k while n
(the number of decryption queries) is polynomial in k, this proves the claim.

Sub-Claim Assuming all “bad” decryption queries of the form described above are rejected,
A learns no additional information about x and y.

Proof of Sub-Claim Note that when a “bad” decryption query is rejected, A learns nothing
about x and y (since the ciphertext is rejected based on a and b alone). So, we need only
look at the “good” decryption queries (u, v, w, e); i.e., those for which logg1

u = logg2
v = r

(for some r). From the response m to such a query, A learns that w/m = (gr
1)

x(gr
2)

y, or:

logg1
(w/m) = xr + yr · γ. (5)

However, the above equation and Equation (2) are linearly dependent. Thus, no extra
information about (x, y) is revealed.

The above claims show that, with all but negligible probability, when A gets the chal-
lenge ciphertext (g3, g4, gx

3 gy
4 · mb, ga

3gb
4), there are q equally-likely possibilities for (x, y).

Thus, with all but negligible probability gx
3 gy

4 ·mb is uniformly distributed over G and inde-
pendent of b and hence Pr[A = b] = 1

2
. But this is equivalent to Equation (1), completing

the proof for Claim 4 and Theorem 1.

It is worth noting that the proof above fails to extend for the case of adaptive chosen-
ciphertext attacks. The reason is as follows: in trying to extend the proof of Claim 4, we see
now that the challenge ciphertext (g3, g4, gx

3gy
4 ·mb, ga

3gb
4) gives an additional, independent

linear constraint on the pair (a, b); namely:

logg1
e = a logg1

g3 + b logg1
g4. (6)

From Equations 3 and 6, A could (at least in theory) compute the values of a and b. Thus,
the first sub-claim — though still true for the decryption queries made by A before seeing
the challenge ciphertext — no longer holds for decryption queries made by A after seeing
the challenge ciphertext (indeed, here we see exactly an example of the extra power given
by an adaptive chosen-ciphertext attack). In particular, A can potentially make a query
of the form (gr

1, g
r′

2 , w, (gr
1)

a(gr′

2 )b) (with r 6= r′), receive in return the answer m, and thus
learn that:

logg1
(w/m) = xr + yr′ · γ. (7)

Since Equations 2 and 7 are linearly independent, A can compute the values of x and y and
decrypt the challenge ciphertext.

The above just shows where the proof breaks down, but does not show an explicit
(poly-time) attack. However, such an attack on the simplified Cramer-Shoup scheme is
easily derived, and is left as an exercise.
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3 The Cramer-Shoup Cryptosystem

The discussion at the end of the last section illustrates that for the proof to extend, we
need to ensure that the adversary still cannot submit “bad” ciphertexts which decrypt
“properly”, even after seeing the challenge ciphertext. We will achieve this by adding two
more variables so that the number of unknowns will remain greater than the number of
linear equations in these unknowns. The details follows.

Before fully describing the scheme, we note that the scheme will use a collision-resistant
hash function H hashing arbitrary-length strings to

�
q. We do not give a formal definition

here, but content ourselves with the following, informal definition: a function is collision-
resistant if an adversary cannot find two distinct inputs hashing to the same output in any
“reasonable” amount of time. (In fact, a weaker assumption suffices to prove security for
the Cramer-Shoup cryptosystem, but we do not explore this further here.)

The Cramer-Shoup scheme is as follows:

• PK = (g1, g2, h = gx
1 gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2 , H) where H is a collision-resistant
hash function

• SK = (x, y, a, b, a′, b′)

• EPK(m): Choose random r ∈
�

q, and set C = (gr
1, gr

2, hr · m, (cdα)r), where α =
H(gr

1, g
r
2, h

r ·m).

• DSK(u, v, w, e)

- if ua+αa′

vb+αb′ 6= e (where α = H(u, v, w)) then output ⊥ (i.e., invalid)

- else output w
uxvy

For an honestly-constructed ciphertext, we have:

ua+αa′

vb+αb′ = uavb(ua′

vb′)α

= (ga
1gb

2)
r(ga′

1 gb′

2 )rα

= crdrα = (cdα)r

and so the validity check always succeeds. It can then be verified that decryption recovers
the encrypted message.

Theorem 5 Under the DDH assumption, the Cramer-Shoup scheme is secure against adap-
tive chosen-ciphertext attacks.

Proof We proceed as we did in the previous proof, using the same notation as there.
Given a ppt adversaryA attacking the Cramer-Shoup Scheme that succeeds with PrA[Succ],
we construct an adversary A′ as follows:

A′(g1, g2, g3, g4)

x, y, a, b, a′, b′ ←
�

q

PK = (g1, g2, h = gx
1gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2 ,H)
(m0,m1)← A(PK)
b← {0, 1}

b′ ← A(PK, g3, g4, gx
3 gy

4 ·mb, ga+αa′

3 gb+αb′

4 )
output 1 iff b′ = b
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The following two claims are exactly as in the previous proof:

Claim 6
∣

∣ Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ = negl(k).

Claim 7 Pr[A′ = 1|DH] = PrA[Succ].

To complete the proof, we prove the following claim. Note, however, that the proof is now
more complicated than it was previously.

Claim 8
∣

∣Pr[A′ = 1|Rand]− 1

2

∣

∣ = negl(k).

Proof As before, we will show that the claim is true even if A were able to compute
discrete logarithms (which, in general, it cannot since it runs in polynomial time). Further-
more, the overall structure of the proof will be the same — namely, we show that A cannot
make any “bad” decryption queries that do not get rejected, and that conditioned on this
fact A has no information about the encrypted message (since it does not have enough
information about x, y). Since the latter part of the proof is the same, we only consider the
first part of the proof here. The discussion below assumes the reader is familiar with the
proof for the simplified Cramer-Shoup scheme given earlier.

Let us look at the information A possibly learns about a, b, a′, b′ during the course of
the experiment. From the public key, A learns:

logg1
c = a + b · γ (8)

logg1
d = a′ + b′ · γ , (9)

where we again let γ = logg1
g2. Let g3 = gr

1 and g4 = gr′

2 ; as usual, with all but negli-
gible probability we have r 6= r′. When A is given the challenge ciphertext, denoted by
(g3, g4, w

∗ = gx
3 gy

4 ·mb, e
∗ = ga+αa′

3 gb+αb′

4 ), A additionally learns:

logg1
e∗ = (a + αa′)r + (b + αb′)γr′. (10)

As in the previous proof, we want to show that, with all but negligible probabil-
ity, any “bad” decryption queries made by A — i.e., decryption queries (u, v, w, e) with
logg1

u 6= logg2
v — will be rejected. Recall that A is not allowed to submit (u, v, w, e) =

(u∗, v∗, w∗, e∗). We look at three possible cases:

Case 1. If (u, v, w) = (u∗, v∗, w∗) but e 6= e∗, it is easy to see that this query will always
be rejected.

Case 2. If (u, v, w) 6= (u∗, v∗, w∗) but H(u, v, w) = H(u∗, v∗, w∗) then this means that A
has found a collision in H. But since H is collision-resistant and A runs in polynomial time,
we may assume that this happens with only negligible probability.

Case 3. If H(u, v, w) 6= H(u∗, v∗, w∗), then let α′ = H(u, v, w) (and, as in Equation (10),
α = H(u∗, v∗, w∗)). Let logg1

u = r̂ and logg2
v = r̂′, and recall that since we are considering

“bad” queries we have r̂ 6= r̂′. Looking at the first “bad” decryption query made by A, we
see that it is not rejected only if:

logg1
e = (a + α′a′)r̂ + (b + α′b′)γr̂′.
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The key point is that this equation is linearly independent of Equations (8)–(10), where these
are being viewed as four equations in the four unknowns a, b, a′, b′. (Linear independence
can be verified by “brute-force” calculation, which is worth doing at least once. In fact,
if you work it out you will find that the equations are linearly independent exactly when
r 6= r′ and r̂ 6= r̂′ and α 6= α′, which are exactly the conditions we consider!)

As in the previous proof, this means that the first “bad” decryption query of A is
rejected except with probability 1/q. Continuing in the same way as in the previous proof,
we see that all of the “bad” decryption queries of A are rejected, except with negligible
probability (here, we use the fact that A may make only polynomially-many queries). This
concludes the proof of the claim, and hence the proof of the theorem.
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