
CMSC 858K — Advanced Topics in Cryptography March 11, 2004

Lecture 14

Lecturer: Jonathan Katz Scribe(s):
Alvaro A. Cardenas
Kavitha Swaminatha
Nicholas Sze

1 A Note on Adaptively-Secure NIZK

A close look at the constructions we have shown in class for NIZK shows that the given
constructions already satisfy the adaptive zero-knowledge property. Interestingly, to the
best of Prof. Katz’s knowledge there is no known technique for converting an arbitrary non-
adaptive NIZK proof system into an adaptive one. On the other hand, all the examples of
NIZK proof systems of which he is aware happen to be adaptively-secure anyway.

2 The Random Oracle Model

In some sense, we have seen in class essentially all that is known about constructing CCA2-
secure encryption schemes. There are two1 high-level approaches to constructing such
schemes: the first uses generic NIZK (an example of which is the scheme of Dolev-Dwork-
Naor, although there are other examples as well) and the second relies on the techniques first
introduced by Cramer and Shoup (the scheme we showed in class was based on the decisional
Diffie-Hellman assumption, but constructions based on other number-theoretic assumptions
are possible). The first approach currently does not give any practical schemes, since we
do not currently have any examples of practical NIZK proofs (even for specific problems
of interest). The second approach yields very efficient schemes, but is based on specific
cryptographic assumptions. We remark further that even the Cramer-Shoup scheme (and
its variants) is not as efficient as various CPA-secure schemes which are sometimes used in
practice (e.g., El Gamal or (unproven) RSA-based schemes).

Assuming for a moment that only very efficient schemes will actually be used, what
options do we have? One option is to simply resign ourselves to using encryption schemes
satisfying weaker definitions of security (e.g., CPA-secure schemes). Another option is to use
schemes which heuristically seem to protect against chosen-ciphertext attacks (but which
are not provably secure). However, these options are unsatisfying: we have seen already that
chosen-ciphertext attacks represent a real concern in many scenarios, and we also know that
if we do not protect against these concerns in a provably-secure way then we leave ourselves
open to the possibility of an attack.

A third approach is to introduce a new cryptographic model in which to prove schemes
secure. (We will see below that this is not the same as introducing new cryptographic
assumptions with which to build new, provably-secure schemes.) One very successful and
widely-popular model is the random oracle model, first formalized by [1] (although it has

1Recently, a third approach was suggested [3].

14-1

been used previously; see, e.g., [4]). The random oracle model assumes the existence of a
public oracle denoted H which implements a (truly) random function. That is:

1. The oracle is public: all parties, including the adversary, can submit queries x to the
oracle and receive in return H(x). However, queries to the oracle are private so that
if an honest party queries H(x), an external adversary does not see x.

2. The oracle implements a truly random function in the following sense. Say H maps
`-bit strings to n-bit strings. H will maintain a list of pairs L = {(xi, yi)} such that
H(xi) = yi; the list is initially empty. When H receives a query x, it searches through
L for a tuple of the form (x, y): if it finds such a tuple, it returns y. Otherwise, H
chooses a random string y ∈ {0, 1}n, returns the value y, and stores (x, y) in L. In
this sense, H evaluates a function which is truly random (i.e., the value of H(x) at a
point x that has not yet been queried is truly random).

While the above is a fine theoretical model, it does not tell us what to do in practice
with a scheme designed in the random oracle model (random oracles certainly do not exist,
and even if we wanted to implement a [private] random function the space required would
be prohibitive2). In practice, the random oracle will be instantiated with a particular
cryptographic hash function based on, say, SHA-1 or MD5. Overall, then, we will design
cryptographic schemes via the following, two-step process: First, design and prove the
scheme secure in the random oracle model; then, instantiate the random oracle with a
particular hash function H. The intuition is that if H is a “good” hash function, then it
“acts” like a random oracle and thus the scheme should remain secure in the real world.

Is the above claim correct? Can we formally define what it means for a hash function
to be “good” or to “act like a random oracle”? Unfortunately, these questions are still
unresolved. On the one hand, there is no known way to instantiate the random oracle
(in the theoretical model) by a cryptographic hash function (in the real world) in such a
way that the resulting real-world scheme is guaranteed to be secure whenever the scheme
is proven secure in theory. In fact, some negative results are known: for example, there
are signature/encryption schemes which are secure in the random oracle model but which
are insecure in the real world regardless of how the random oracle is instantiated [2]. Even
worse, there are cryptographic tasks which can be achieved in the random oracle model but
cannot be achieved — by any scheme — in the real world.

These negative results make the random oracle model somewhat controversial (in fact,
proofs of security done without using the random oracle are said to be “in the standard
model”), but it is worth considering the arguments in its favor: First, a scheme proven
secure in the random oracle model can be said (very informally) to lack any “structural”
flaws; thus, any attack on the scheme in the real world “must” arise due to some weakness in
the hash function used to instantiate the random oracle, but does not represent a weakness
of the scheme itself (and the hash function can then be replaced with a “better” one).
Furthermore, it is certainly preferable to use a scheme which is provably-secure in the
random oracle model than to use a scheme with no proof of security at all (of course, this
assumes that, for reasons of efficiency, these are the only options. . .). Finally, schemes

2The space required to store a random function mapping `-bit strings to m-bit strings is m · 2` bits. Of
course, in practice one could build the function dynamically as discussed in the text. . .

14-2

designed in the random oracle model are (currently, at least) much more efficient than
schemes proven secure in the standard model: this is the ultimate reason for using the
model, after all.

2.1 How the Random Oracle Model is Used

It might initially be surprising that introducing a “random function” can enable proofs of
security that do not seem possible in the standard model. But we stress that proofs in
the random oracle model rely on much more than the fact that H is “random-looking” or
“unpredictable”: they rely strongly on the fact that an adversary can only learn about the
oracle by making explicit queries to an external oracle. This gives two advantages when
proving security of a scheme: given an adversary A, another algorithm A′ running A as a
subroutinecan see the queries A makes to its random oracle (this is because we imagine A
as an oracle machine which outputs its queries to a special tape — which can be observed
by A′ — and expects to get back answers from a random oracle). Second, A′ can answer
the random oracle queries of A any way it likes. (In general, A′ will have to answer these
queries in a “random-looking” way so that A cannot distinguish whether it is interacting
with a random oracle or with A′, but this still gives A′ an advantage.) We will see examples
of both of these strategies in the next few lectures.

To get a feel for the difficulties that arise when translating this to the real world, note
that if we instantiate a random oracle by, say, SHA-1, then neither of the above conditions
hold (of course!). Furthermore, in the random oracle model a statement like the following
makes sense: “no algorithm can distinguish H(x) from an independent random string with-
out explicitly querying the random oracle at point x” but in the real world the statement
“no algorithm can distinguish SHA-1(x) from an independent random string without ex-
plicitly computing SHA-1(x)” is meaningless. (What does it mean to “compute” SHA-1?
How do we tell whether an algorithm is computing SHA-1 or doing something different?)

It is also important to note that the random oracle model is not at all like the security
model used for pseudorandom functions (PRFs), which we did not get to cover this semester.
In that model, the adversary is provided with oracle access to a function Fs(·) because the
adversary is not supposed to be able to compute Fs(·) (since the seed s is secret). In contrast,
in the random oracle model the adversary is supposed to be able to compute H(·) but we
“force” the adversary (in the theoretical model) to compute it via oracle access only. Note
further that Fs(·) is most definitely not pseudorandom (whatever that might mean) if s is
revealed to the adversary; thus, one cannot simply replace a random oracle with a PRF.

3 Semantically-Secure Encryption in the RO Model

We now give a concrete example of how the random oracle model is used to design schemes,
and how proofs of security in the random oracle model proceed. Before doing so, let us
recall (from Lecture 2) the construction of semantically-secure encryption from trapdoor
permutations in the standard model: Key generation involves choosing f, f−1; the public
key is f , while the secret key is (the trapdoor information needed to compute) f −1. To
encrypt a single bit b, the sender chooses a random domain element x and a random r
and sends ciphertext 〈f(x), (x · r)⊕ b〉 (i.e., we are using here the Goldreich-Levin hardcore

14-3

bit construction). One application of f is needed to encrypt a single bit — this is pretty
inefficient, and one is not likely to do this in practice.

It is worth reminding ourselves also why more efficient approaches do not work. For
example, why not encrypt a (longer) message m by choosing r of the appropriate length and
sending f(m | r)? We noted that this would not be secure in general because f(x) might
leak the first 10 bits, say, of x. In fact, it is known that, in general, a trapdoor permutation
is only “guaranteed” to have at least O(log k) bits (where k is the security parameter. So,
the best we can hope to do (in some sense) is to encrypt log k bits per evaluation of f .

However, the above is all for the standard model. In the random oracle model, however,
we can get an unbounded number of “hardcore” bits from any trapdoor permutation. We
use the fact that the value of H(r) is truly random if (1) H is a random oracle and (2) an
adversary has not explicitly queried H(r). (As noted at the end of the previous section,
statement (1) clearly cannot be true for any concrete instantiation of H since, from an
information-theoretic point of view, f(r) completely determines r and thus H(r), and so
the entropy of H(r) given f(r) is 0! Also, H(r) might be longer than r, implying that we are
creating randomness out of thin air.) Furthermore, given f(r) the adversary is not likely to
query H(r) because that would mean that the adversary had succeeded in inverting f . In
short, we can encrypt a long message m by choosing random r and sending 〈f(r),H(r)⊕m〉.

In more detail, let H map from the domain of the trapdoor permutation family to strings
of length `. Then we can encrypt `-bit messages as follows (in the below, we assume for
simplicity that the domain of the trapdoor permutation is {0, 1}k):

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

Output pk, sk

Epk(m)

r ← {0, 1}k

Output 〈f(r),H(r)⊕m〉

Dsk(〈y, c〉)

r = f−1(y)
Output H(r)⊕ c

Claim 1 The scheme above is semantically secure in the random oracle model if f is chosen
from a trapdoor permutation family.

Proof We need to prove that for every ppt A the following is negligible:

AdvA(k)
def
=

∣

∣

∣

∣

∣

Pr

[

(f, f−1)← Gen(1k); (m0,m1)← AH(f); b← {0, 1};

r ← {0, 1}k ; b′ ← AH(f, 〈f(r),H(r)⊕mb〉)
: b = b′

]

−
1

2

∣

∣

∣

∣

∣

.

Note that we give the adversary access to H, as we must in the random oracle model.
We observe the following: If A never queries H(r) (where r is the random element chosen

in the above experiment), then the value of H(r) is truly random (at least from the point
of view of A) and thus A has no information about the value of b. Let query be the event
that A queries H(r) at some point during the above experiment, and let Succ be the event
that A correctly outputs b′ = b. We then have

AdvA(k) =

∣

∣

∣

∣

Pr[Succ | query] Pr[query] + Pr[Succ | query] Pr[query]−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr[Succ | query] Pr[query] +
1

2
· Pr[query]−

1

2

∣

∣

∣

∣

14-4

=

∣

∣

∣

∣

Pr[Succ | query] Pr[query]−
1

2
· Pr[query]

∣

∣

∣

∣

≤
1

2
Pr[query].

To complete the proof, we show that Pr[query] is negligible.
Given any ppt adversary A as above, we construct an algorithm B that tries to invert

f at a random point in the real world. Since B will not have access to any random oracle,
it will have to simulate the random oracle for A. But this is easy to do: for every query
x made by A to H, simply return a random answer if x was not queried before, or the
same answer given previously if x was queried before (in fact, without loss of generality we
may simply assume that A does not make the same query to H twice). We construct B as
follows:

B(f, y)

run AH(f) until it outputs m0,m1

(answering queries to H as discussed below)
c← {0, 1}`

run AH(f, 〈y, c〉) until it halts
for each query ri made by A to H:

if f(ri) = y output ri and halt
Otherwise, simply return a random `-bit string

Let r
def
= f−1(y) (of course, B does not know this value). Note that B provides a

perfect simulation of the experiment for A up to the point (if any) that A queries H(r). To
see this, observe that f is randomly generated, y = f(r) for a randomly-chosen r (recall
the definition of inverting a trapdoor permutation from earlier lectures), and B faithfully
simulates a random oracle on all points other than r. Now, in the above experiment the
value c is a random string whereas in the real experiment we have c = H(r) ⊕mb where
b is chosen at random. However, if A has not yet queried H(r) then the value of H(r) is
truly random and thus choosing c as a random string results in a perfect simulation. This
continues to be the case up to the point, if any, that A actually queries H(r).

Finally, note that B succeeds in inverting f exactly when query occurs. By the above
reasoning, query occurs in the above experiment with the exact same probability as in the
real experiment. Thus, Pr[query] must be negligible.

We remark that an extension of the above proof can be used to show that the scheme is
secure against non-adaptive chosen-ciphertext attacks (this is left as an exercise). However
the scheme is not secure against adaptive chosen-ciphertext attacks. Consider the algorithm
which, upon receiving ciphertext 〈y, c〉 submits ciphertext 〈y, c⊕1`〉 to the decryption oracle.
By doing so, the adversary can recover H(f−1(y)) (although it does not learn f−1(y) itself),
and thereby figure out which message was encrypted.

4 Toward CCA2 Security in the Random Oracle Model

In the next lecture, we will construct a CCA2-secure encryption scheme in the random
oracle model. In preparation, we first show how to construct an information-theoretically

14-5

secure message authentication code (MAC). Let
�

q denote the field with q elements.

Claim 2 If a, b are chosen at random from
�

q and an adversary is given (m,am + b) (for
m ∈

�
q of the adversary’s choice) the probability that the adversary can output (m ′, t′) such

that t′ = am′ + b and m′ 6= m is at most 1

q
.

Proof When the adversary is given (m, t), it knows that a, b are chosen uniformly at
random subject to t = am + b. Note that, from the point of view of the adversary, a is
uniformly distributed in

�
q since for every a ∈

�
q there is exactly a single value of b (namely,

b = t− am) such that t = am + b. Now, for any (m′, t′) with m′ 6= m, we have t′ = am′ + b
iff t′ − t = a(m−m′). Thus

Pr[t′ = am′ + b] = Pr[a = (t′ − t)(m−m′)−1] = 1/q.

This concludes the proof.

This leads to a simple way to authenticate a single message: two parties share random
(a, b) in advance, and to authenticate a message m ∈

�
q the sender computes t = am+b. An

(all-powerful) adversary can “fool” the receiver into accepting some m′ 6= m with probability
at most 1/q. Choosing q large enough we get as much security as we like.

References

[1] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. ACM Conf. on Computer and Communications Security, 1993.

[2] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology Revisited.
STOC ’98.

[3] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. Eurocrypt 2004.

[4] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. Crypto ’86.

14-6

