CMSC 858K — Advanced Topics in Cryptography	March 16, 2004
Lecture 15	
Lecturer: Jonathan Katz	Avi Dalal Scribe(s): Abheek Anand Gelareh Taban

1 Introduction

In the previous lecture, we introduced the notion of message authentication: Given message $m \in \mathbb{F}_q$, to authenticate it pick two random secrets $a, b \in \mathbb{F}_q$ and output (m, am + b). The possibility of an attacker outputting (m', t') such that $(m' \neq m)$ and (t = am' + b) is at most 1/q. The security of this message authentication protocol is information-theoretic and does not rely on any computational assumptions (a proof was given last time). For future reference, we let $\mathsf{Mac}_{a,b}(m) \stackrel{\text{def}}{=} am + b$.

We will use this message authentication scheme to modify the encryption scheme given previously and make it secure against adaptive chosen-ciphertext attacks in the random oracle model. We also introduce OAEP⁺ and prove its security.

2 The Modified Encryption Scheme

For simplicity, we assume that messages to be encrypted lie in some field \mathbb{F}_q with |q| = k (i.e., the security parameter), and also assume that H maps elements in the domain of the trapdoor permutation family to elements in \mathbb{F}_q^3 . (If you like, you can think of messages as strings of length ℓ and set $q = 2^{\ell}$.)

 $\begin{array}{lll} \displaystyle \frac{\mathsf{Gen}(1^k)}{\mathsf{Generate}} & \displaystyle \frac{\mathcal{E}_{pk}(m)}{r \leftarrow \{0,1\}^k} & \displaystyle \frac{\mathcal{D}_{sk}(\langle y,C,t\rangle)}{r = f^{-1}(y)} \\ pk = f, sk = f^{-1} & \operatorname{let} H(r) = (a,b,c) \in \mathbb{F}_q^3 & (a,b,c) = H(r) \\ \text{output } pk, sk & \displaystyle C = m + c & \operatorname{if} aC + b \stackrel{?}{=} t \text{ then output } C + c \\ t = \mathsf{Mac}_{a,b}(C) & \operatorname{else output} \bot \end{array}$

It is not hard to verify that the scheme gives correct decryption.

Theorem 1 If f is chosen from a trapdoor permutation family, the above scheme is CCA2 secure in the random oracle model.

Proof We assume the reader is familiar with the proof of semantic security for a related scheme that was given in Lecture 14. The proof here will be similar, but more complicated because we will now need to take into account the *decryption oracle* for an adversary attacking the scheme. Let A be an adversary attacking the scheme, and let r denote the random value used by the sender (i.e., encryption oracle) in constructing the challenge ciphertext $\langle y, C, t \rangle$ that is given to A. Let query be the event that A make the query

H(r) at some point during the experiment, and let dec be the event that A submits a ciphertext $\langle y, C', t' \rangle$ with $(C', t') \neq (C, t)$ but where this ciphertext is decrypted properly (i.e., decryption does not result in \perp).

Since we are in the random oracle model, A can only gain any information about the encrypted message if either query or dec occur; thus, as in the proof given previously:

$$\mathsf{Adv}_A(k) \leq \frac{1}{2}\Pr[\mathsf{query} \lor \mathsf{dec}].$$

Define $H(r) = (a^*, b^*, c^*)$. Now, if query has not yet occurred then the only information A has about (a^*, b^*) is that $\mathsf{Mac}_{a^*, b^*}(C) = t$. But then the properties of the message authentication code imply that the probability that dec occurs in any particular query to the decryption oracle is at most 1/q (note that every "message" has a unique tag, so setting C' = C will not help). Let query^{1st} denote the event that query occurs before dec (including the case when dec does not occur at all) and define dec^{1st} similarly. The above shows that if A makes at most q_d queries to the decryption oracle we have $\Pr[\mathsf{dec}^{1st}] \leq q_d/q$. Putting everything together we see:

$$\begin{array}{lll} \mathsf{Adv}_A(k) & \leq & \frac{1}{2} \Pr[\mathsf{query} \lor \mathsf{dec}] \\ & = & \frac{1}{2} \cdot \left(\Pr[\mathsf{query}^{1st}] + \Pr[\mathsf{dec}^{1st}] \right) \\ & \leq & \frac{1}{2} \cdot \left(\Pr[\mathsf{query}^{1st}] + q_d/q \right). \end{array}$$

For A a PPT algorithm, q_d is polynomial and thus q_d/q is negligible (this is why we required |q| = k). To complete the proof, we show that $\Pr[query^{1st}]$ is negligible.

Let A be a PPT adversary attacking the scheme who is given access both to the random oracle $H(\cdot)$ as well as a decryption oracle $D_{sk}(\cdot)$. We construct the following adversary B who will try to invert f on a given point chosen at random from the domain of f. As in the previous proof, B will simulate the experiment for A but this now includes simulating A's access to the decryption oracle (since B does not know $sk = f^{-1}$ we represent the decryption oracle by D). The oracle queries of A are answered in such a way as to ensure consistency between the answers given by the different oracles. This is done by storing two lists: list S_H contains tuples (r, a, b, c) such that H(r) = (a, b, c) (as chosen by B), while list S_y contains tuples (y, a, b, c) such that $H(f^{-1}(y)) = (a, b, c)$ but the important point is that B may not know $f^{-1}(y)$. We now provide a complete description:

> $\frac{B(f,y)}{S_H = \emptyset}; S_y = \emptyset$ run $A^{D(\cdot),H(\cdot)}(f)$ until it outputs m_0, m_1 (answering queries to D and H as discussed below) $C, t \leftarrow \mathbb{F}_q$ run $A^{D(\cdot),H(\cdot)}(f,\langle y,C,t\rangle)$ until it halts

To answer query $H(r_i)$:

if $f(r_i) = y$ output r_i and halt the experiment if $r_i = r_j$ for some $(r_j, a_j, b_j, c_j) \in S_H$ then return (a_j, b_j, c_j) if $f(r_i) = y_j$ for some $(y_j, a_j, b_j, c_j) \in S_y$ then return (a_j, b_j, c_j) otherwise, choose $(a, b, c) \leftarrow \mathbb{F}_q^3$ and return (a, b, c)store r_i and the returned values in S_H

To answer query $D(\langle y_i, C_i, t_i \rangle)$:

if $y_i = y$ return \perp if $y_i = y_j$ for some $(y_j, a_j, b_j, c_j) \in S_y$ then decrypt using (a_j, b_j, c_j) if $f(r_j) = y_i$ for some $(r_j, a_j, b_j, c_j) \in S_H$ then decrypt using (a_j, b_j, c_j) otherwise, choose $(a, b, c) \leftarrow \mathbb{F}_q^3$ and decrypt using (a, b, c)store y_i and the (a, b, c) values used in S_y

(Note: "decrypt $\langle y, C, t \rangle$ using (a, b, c)" simply means to return C + c if $aC + b \stackrel{?}{=} t$, and \bot otherwise.) Clearly, B runs in polynomial time when A does; also, it is easy to see that B succeeds in inverting f whenever query occurs and, in particular, if query^{1st} occurs. The above simulation is perfect unless event dec or query occurs. Since we are interested in the event query^{1st} — which occurs immediately if query occurs first and can no longer occur if dec occurs first — the probability of event query^{1st} is the same in the above experiment as in a real execution of A when attacking the encryption scheme. Thus, the security of the trapdoor permutation family implies that $\Pr[query^{1st}]$ is negligible, as desired.

3 Optimal Asymmetric Encryption Padding (OAEP) and OAEP⁺

A possible drawback of the above scheme is its ciphertext length. Given a trapdoor permutation f acting on k-bit strings, it would be nice to be able to send a ciphertext which is exactly k bits long. OAEP was designed to do this while allowing the message to be as long as possible (and while still being secure against chosen-ciphertext attacks).

OAEP was proposed by Bellare and Rogaway in 1994 [1] and is defined for any trapdoor permutation family. However, the proof was later found to have a subtle error and a number of fixes were proposed (see [4] for a good discussion of the flaw, and a counterexample which illustrates that the flaw is real). Fujisaki, et al. [3] and Shoup [4] show that OAEP is in fact secure when RSA is used as the underlying trapdoor permutation family; the proof of security relies on specific algebraic properties of RSA and does not hold for an arbitrary trapdoor permutation. Boneh [2] gave a simplified version of OAEP which is provablysecure when the RSA or Rabin trapdoor permutation families are used. Shoup [4] showed a way to modify OAEP so as to be secure for an arbitrary trapdoor permutation family. We will present this last scheme (called OAEP⁺) here both because of its generality and also because it has what is (arguably) the simplest proof.

Let f be a one-way trapdoor permutation, acting on k-bit strings. Also let k_0, k_1 be two parameters such that $k_0 + k_1 < k$ and 2^{-k_0} and 2^{-k_1} are negligible. For example, in an asymptotic setting one could take $k_0 = k_1 = k/3$; more concretely, if RSA is used and k = 1024, then we may set $k_0 = k_1 = 128$. The scheme encrypts messages $m \in \{0, 1\}^n$ where $n = k - k_0 - k_1$. The scheme also makes use of three functions:

$$\begin{array}{l} G: \{0,1\}^{k_0} \to \{0,1\}^n \\ H': \{0,1\}^{n+k_0} \to \{0,1\}^{k_1} \\ H: \{0,1\}^{n+k_1} \to \{0,1\}^{k_0}. \end{array}$$

These three functions will be modeled as independent random oracles in the security analysis. The scheme is defined as follows:

$$\begin{array}{lll} \underline{\mathsf{Gen}(1^k)} & \underline{\mathcal{E}_{pk}(m)} & \underline{\mathcal{E}_{pk}(m)} \\ \overline{\mathsf{Generate}} \ f, f^{-1} & \overline{r} \leftarrow \{0, 1\}^{k_0} & \overline{s} || t = f^{-1}(y), \\ pk = f, sk = f^{-1} & s = (G(r) \oplus m) \, || \, H'(r||m) & (\text{where } |s| = n + k_1) \\ \text{output } pk, sk & t = H(s) \oplus r & p \\ & y = f(s||t) & \text{output } y & (\text{where } |s_1| = n; \, |s_2| = k_1) \\ & \text{output } y & m = G(r) \oplus s_1 \\ & \text{if } (H'(r||m) \stackrel{?}{=} s_2) \text{ output } m \\ & \text{else output } \bot \end{array}$$

The intuition is that this scheme is constructed such that an eventual *simulator*, who does not know sk, is able to answer the decryption queries of an adversary A based only on the oracle queries made by A.

Theorem 2 If f is chosen from a trapdoor permutation family, the above scheme is CCA2 secure in the random oracle model.

Proof The proof given here is organized a little differently from the proof given in [4], and the reader is advised to look there for much more detail. Let A be an adversary attacking the scheme. As usual, A will have access to the random oracles in addition to the decryption oracle (and the encryption oracle as well). We assume without loss of generality that whenever A makes a query H'(r||m) it has previously made the query G(r). Let S_G, S_H , and $S_{H'}$ be the set of points at which A has queried G, H, and H', respectively. (These sets grow dynamically each time A queries one of its oracles.) We begin by proving a claim regarding the decryption query is *invalid*; queries which are not invalid are called *valid*. Note that any decryption query y made by A (implicitly) defines values s, t, r, and m (just by following the decryption process); we say a decryption query y is *likely to be invalid* if, at the time the query was made, either A had not yet queried H'(r||m) or A had not yet queried H(s) (for the r, m, s associated with y). Finally, we say a query is *exceptional* if it is likely to be invalid but is, in fact, valid. Then:

Claim 3 Even if A is all-powerful (but can only make polynomially-many queries to its oracles), the probability that A makes an exceptional query is negligible.

Proof (of Claim 3): Note that this is an information-theoretic argument based on A's lack of knowledge about the values of the random oracle on points it has not (yet) queried. Since A is all-powerful, we may as well dispense with f, f^{-1} and simply assume that when

A gets the challenge ciphertext y^* it immediately recovers $s^*||t^* = f^{-1}(y^*)$ and that when A submits a decryption query y it already knows $s||t = f^{-1}(y)$.¹ Let m^* be the message encrypted to give the challenge ciphertext (note that even an all-powerful A does not know m^* unless it queries $G(r^*)$), and let s_1^*, s_2^*, r^*, t^* be defined in the natural way based on y^* . We focus on a particular decryption query y that A makes after getting the challenge ciphertext (with s_1, s_2, r, t defined in the natural way), and show that the probability that yis exceptional is negligible. Since A makes at most polynomially-many decryption queries, this suffices to prove the claim.

Consider the query y where $s||t = f^{-1}(y)$, and assume that y is likely to be invalid (recall, this is either because A has not queried H'(r||m) or because A has not queried H(s)). We show that y is invalid with all but negligible probability by considering the possible cases:

Case 1: A has not queried H'(r||m) and $r = r^*$ and $m = m^*$. Since $(r, m) = (r^*, m^*)$, we also have $s_1 = s_1^*$. If the ciphertext is not invalid, then we must have $s_2 = s_2^*$ and hence $t = t^*$ as well. But this would imply that $y = y^*$, and A is prohibited from querying the decryption oracle with the challenge ciphertext.

Case 2: A has not queried H'(r||m) and $r \neq r^*$. In this case, the value of H'(r||m) is completely random given A's view of the experiment (note that H'(r||m) was not queried during the course of constructing the challenge ciphertext, either). Thus, the probability that y is valid is the probability that H'(r||m) is equal to s_2 , which is $2^{-|s_2|} = 2^{-k_1}$ and hence negligible.

Case 3: A has not queried H'(r||m) and $m \neq m^*$. The argument in this case is exactly as in the previous case, so we omit it.

Case 4: A has not queried H(s) and $s = s^*$. Since we must have $y \neq y^*$, this implies that $t \neq t^*$ and hence $r \neq r^*$. The only way y can be valid is if $H'(r||m) = s_2 = s_2^*$, where $s_2^* = H'(r^*||m^*)$. Thus, y is valid only if A has managed to find a *different* input hashing to the same k_1 -bit value s_2^* . Since A makes only polynomially-many queries to H', this occurs with only negligible probability.

Case 5: A has not queried H(s) and $s \neq s^*$. In this case, the value of H(s) is completely random from the point of view of A (note that H(s) was not queried when the challenge ciphertext was constructed, either). Thus, the value of r is completely random from the point of view of A, and so the probability that A has queried H'(r||m) is negligible. Assuming A has not queried H'(r||m), we reduce to one of the cases considered previously.

Given the above claim, we now prove the theorem in a manner similar to the proof of Theorem 1 (as well as the proof given in the previous lecture). We will be a little informal from now on, but the reader should be able to fill in the missing details (indeed, the difficult part of the proof is the above claim). Note that A has no information about the message that was encrypted to give the challenge ciphertext unless it queries $G(r^*)$. Also, the probability

¹One may wonder why A needs to submit a decryption query if it is all powerful. The point is that in this claim we are interested in the probability a particular event which is independent of the security of the encryption scheme (indeed, if A is all-powerful than it can "break" the encryption scheme anyway). This claim will be used below to prove the actual security of the scheme for a PPT A.

that A queries $G(r^*)$ without first querying $H(s^*)$ is negligible (since A has no information about r^* until it queries $H(s^*)$, and A makes only polynomially-many queries to G). The preceding two statements are true even if A is all-powerful. So, letting **query** be the event that A queries both $H(s^*)$ and $G(r^*)$ we have:

$$\operatorname{Adv}_A(k) \leq \Pr[\operatorname{query}] + \operatorname{negl}(k)$$

We show that $\Pr[\mathsf{query}]$ is negligible by giving an informal description of a PPT algorithm B which uses A as a subroutine and tries to invert f on a given point y^* chosen at random from the domain of f. B will simulate the random oracle queries of A in the natural way, and when A submits messages (m_0, m_1) to its encryption oracle, B returns the challenge ciphertext y^* to A. More interesting is B's simulation of the decryption oracle for A (recall that B does not know how to compute f^{-1}): upon receiving decryption query y, B searches through the list $S_{H'}$ of queries that A has made thus far to H'. For each $(r_i, m_i) \in S_{H'}$, B first computes

$$s_i = (G(r_i) \oplus m_i) || H'(r_i || m_i).$$

Next, if $s_i \notin S_H$ (i.e., A has not queried $H(s_i)$), B returns \perp . Otherwise, B computes $t_i = H(s_i) \oplus r_i$ and then checks whether $y \stackrel{?}{=} f(s_i||t_i)$ (note that B can evaluate f in the forward direction). If this test succeeds for a particular pair (r_i, m_i) , then B returns m_i to A as the (correct) decryption of y. If the test fails for every i, B returns \perp .

At the end of the experiment, B looks through the lists S_H and S_G . For each $s_i \in S_H$ and $r_j \in S_G$, B computes $t_{i,j} = r_j \oplus H(s_i)$ and checks whether $f(s_i||t_{i,j}) \stackrel{?}{=} y^*$. If this is true for any pair, then B outputs $s_i||t_{i,j}$ as the (correct) answer.

The proof concludes using the following observations: (1) until query occurs, the only difference between the view of A in a real experiment and the view of A as simulated by B occurs when A makes an exceptional query (since, in this case, B returns \bot but the decryption query was valid). However, by the claim proven earlier, this occurs with only negligible probability. Thus, (2) the probability of query in the experiment as simulated by B is negligibly close to $\Pr[query]$ (i.e., the probability of query in the real experiment). Finally, (3) B succeeds in inverting y^* whenever query occurs. Since f is assumed to be a trapdoor permutation family, putting the above observations together shows that $\Pr[query]$ is negligible.

References

- M. Bellare and P. Rogaway. Optimal Asymmetric Encryption How to Encrypt with RSA. Eurocrypt '94.
- [2] D. Boneh. Simplified OAEP for the RSA and Rabin Functions. Crypto 2001.
- [3] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure Under the RSA Assumption. Crypto 2001.
- [4] V. Shoup. OAEP Reconsidered. Crypto 2001.