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1 Introduction

In the previous lecture, we introduced the notion of message authentication: Given message
m ∈

�
q , to authenticate it pick two random secrets a, b ∈

�
q and output (m,am + b). The

possibility of an attacker outputting (m′, t′) such that (m′ 6= m) and (t = am′ + b) is at
most 1/q. The security of this message authentication protocol is information-theoretic and
does not rely on any computational assumptions (a proof was given last time). For future

reference, we let Maca,b(m)
def
= am + b.

We will use this message authentication scheme to modify the encryption scheme given
previously and make it secure against adaptive chosen-ciphertext attacks in the random
oracle model. We also introduce OAEP+ and prove its security.

2 The Modified Encryption Scheme

For simplicity, we assume that messages to be encrypted lie in some field
�

q with |q| = k
(i.e., the security parameter), and also assume that H maps elements in the domain of the
trapdoor permutation family to elements in

� 3
q . (If you like, you can think of messages as

strings of length ` and set q = 2`.)

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

output pk, sk

Epk(m)

r ← {0, 1}k

let H(r) = (a, b, c) ∈
� 3

q

C = m + c
t = Maca,b(C)
output 〈f(r), C, t〉

Dsk(〈y, C, t〉)

r = f−1(y)
(a, b, c) = H(r)

if aC + b
?
= t then output C + c

else output ⊥

It is not hard to verify that the scheme gives correct decryption.

Theorem 1 If f is chosen from a trapdoor permutation family, the above scheme is CCA2
secure in the random oracle model.

Proof We assume the reader is familiar with the proof of semantic security for a related
scheme that was given in Lecture 14. The proof here will be similar, but more complicated
because we will now need to take into account the decryption oracle for an adversary
attacking the scheme. Let A be an adversary attacking the scheme, and let r denote the
random value used by the sender (i.e., encryption oracle) in constructing the challenge
ciphertext 〈y, C, t〉 that is given to A. Let query be the event that A make the query
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H(r) at some point during the experiment, and let dec be the event that A submits a
ciphertext 〈y, C ′, t′〉 with (C ′, t′) 6= (C, t) but where this ciphertext is decrypted properly
(i.e., decryption does not result in ⊥).

Since we are in the random oracle model, A can only gain any information about the
encrypted message if either query or dec occur; thus, as in the proof given previously:

AdvA(k) ≤
1

2
Pr[query ∨ dec].

Define H(r) = (a∗, b∗, c∗). Now, if query has not yet occurred then the only information
A has about (a∗, b∗) is that Maca∗,b∗(C) = t. But then the properties of the message
authentication code imply that the probability that dec occurs in any particular query to
the decryption oracle is at most 1/q (note that every “message” has a unique tag, so setting
C ′ = C will not help). Let query1st denote the event that query occurs before dec (including
the case when dec does not occur at all) and define dec1st similarly. The above shows that
if A makes at most qd queries to the decryption oracle we have Pr[dec1st] ≤ qd/q. Putting
everything together we see:

AdvA(k) ≤
1

2
Pr[query ∨ dec]

=
1

2
·
(

Pr[query1st] + Pr[dec1st]
)

≤
1

2
· (Pr[query1st] + qd/q).

For A a ppt algorithm, qd is polynomial and thus qd/q is negligible (this is why we required
|q| = k). To complete the proof, we show that Pr[query1st] is negligible.

Let A be a ppt adversary attacking the scheme who is given access both to the random
oracle H(·) as well as a decryption oracle Dsk(·). We construct the following adversary B
who will try to invert f on a given point chosen at random from the domain of f . As in
the previous proof, B will simulate the experiment for A but this now includes simulating
A’s access to the decryption oracle (since B does not know sk = f−1 we represent the
decryption oracle by D). The oracle queries of A are answered in such a way as to ensure
consistency between the answers given by the different oracles. This is done by storing two
lists: list SH contains tuples (r, a, b, c) such that H(r) = (a, b, c) (as chosen by B), while
list Sy contains tuples (y, a, b, c) such that H(f−1(y)) = (a, b, c) but the important point is
that B may not know f−1(y). We now provide a complete description:

B(f, y)

SH = ∅;Sy = ∅

run AD(·),H(·)(f) until it outputs m0,m1

(answering queries to D and H as discussed below)
C, t←

�
q

run AD(·),H(·)(f, 〈y, C, t〉) until it halts
(answering queries to D and H as discussed below)
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To answer query H(ri):

if f(ri) = y output ri and halt the experiment
if ri = rj for some (rj , aj , bj , cj) ∈ SH then return (aj , bj , cj)
if f(ri) = yj for some (yj, aj , bj , cj) ∈ Sy then return (aj , bj, cj)
otherwise, choose (a, b, c)←

� 3
q and return (a, b, c)

store ri and the returned values in SH

To answer query D(〈yi, Ci, ti〉):

if yi = y return ⊥
if yi = yj for some (yj , aj , bj , cj) ∈ Sy then decrypt using (aj , bj , cj)
if f(rj) = yi for some (rj , aj , bj , cj) ∈ SH then decrypt using (aj, bj , cj)
otherwise, choose (a, b, c)←

� 3
q and decrypt using (a, b, c)

store yi and the (a, b, c) values used in Sy

(Note: “decrypt 〈y, C, t〉 using (a, b, c)” simply means to return C + c if aC + b
?
= t, and

⊥ otherwise.) Clearly, B runs in polynomial time when A does; also, it is easy to see that
B succeeds in inverting f whenever query occurs and, in particular, if query1st occurs. The
above simulation is perfect unless event dec or query occurs. Since we are interested in the
event query1st — which occurs immediately if query occurs first and can no longer occur if
dec occurs first — the probability of event query1st is the same in the above experiment as
in a real execution of A when attacking the encryption scheme. Thus, the security of the
trapdoor permutation family implies that Pr[query1st] is negligible, as desired.

3 Optimal Asymmetric Encryption Padding (OAEP) and OAEP+

A possible drawback of the above scheme is its ciphertext length. Given a trapdoor per-
mutation f acting on k-bit strings, it would be nice to be able to send a ciphertext which
is exactly k bits long. OAEP was designed to do this while allowing the message to be as
long as possible (and while still being secure against chosen-ciphertext attacks).

OAEP was proposed by Bellare and Rogaway in 1994 [1] and is defined for any trapdoor
permutation family. However, the proof was later found to have a subtle error and a number
of fixes were proposed (see [4] for a good discussion of the flaw, and a counterexample which
illustrates that the flaw is real). Fujisaki, et al. [3] and Shoup [4] show that OAEP is in
fact secure when RSA is used as the underlying trapdoor permutation family; the proof of
security relies on specific algebraic properties of RSA and does not hold for an arbitrary
trapdoor permutation. Boneh [2] gave a simplified version of OAEP which is provably-
secure when the RSA or Rabin trapdoor permutation families are used. Shoup [4] showed a
way to modify OAEP so as to be secure for an arbitrary trapdoor permutation family. We
will present this last scheme (called OAEP+) here both because of its generality and also
because it has what is (arguably) the simplest proof.

Let f be a one-way trapdoor permutation, acting on k-bit strings. Also let k0, k1 be
two parameters such that k0 + k1 < k and 2−k0 and 2−k1 are negligible. For example, in
an asymptotic setting one could take k0 = k1 = k/3; more concretely, if RSA is used and
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k = 1024, then we may set k0 = k1 = 128. The scheme encrypts messages m ∈ {0, 1}n

where n = k − k0 − k1. The scheme also makes use of three functions:

G : {0, 1}k0 → {0, 1}n

H ′ : {0, 1}n+k0 → {0, 1}k1

H : {0, 1}n+k1 → {0, 1}k0 .

These three functions will be modeled as independent random oracles in the security anal-
ysis. The scheme is defined as follows:

Gen(1k)

Generate f, f−1

pk = f, sk = f−1

output pk, sk

Epk(m)

r ← {0, 1}k0

s = (G(r)⊕m) ||H ′(r||m)
t = H(s)⊕ r
y = f(s||t)
output y

Dsk(y)

s||t = f−1(y),
(where |s| = n + k1)

r = H(s)⊕ t
parse s as s1||s2,

(where |s1| = n; |s2| = k1)
m = G(r)⊕ s1

if (H ′(r||m)
?
= s2) output m

else output ⊥

The intuition is that this scheme is constructed such that an eventual simulator, who
does not know sk, is able to answer the decryption queries of an adversary A based only on
the oracle queries made by A.

Theorem 2 If f is chosen from a trapdoor permutation family, the above scheme is CCA2
secure in the random oracle model.

Proof The proof given here is organized a little differently from the proof given in [4],
and the reader is advised to look there for much more detail. Let A be an adversary
attacking the scheme. As usual, A will have access to the random oracles in addition to the
decryption oracle (and the encryption oracle as well). We assume without loss of generality
that whenever A makes a query H ′(r||m) it has previously made the query G(r). Let
SG, SH , and SH′ be the set of points at which A has queried G,H, and H ′, respectively.
(These sets grow dynamically each time A queries one of its oracles.) We begin by proving a
claim regarding the decryption queries made by A. If a decryption query made by A results
in response ⊥, we say the query is invalid ; queries which are not invalid are called valid.
Note that any decryption query y made by A (implicitly) defines values s, t, r, and m (just
by following the decryption process); we say a decryption query y is likely to be invalid if,
at the time the query was made, either A had not yet queried H ′(r||m) or A had not yet
queried H(s) (for the r,m, s associated with y). Finally, we say a query is exceptional if it
is likely to be invalid but is, in fact, valid. Then:

Claim 3 Even if A is all-powerful (but can only make polynomially-many queries to its
oracles), the probability that A makes an exceptional query is negligible.

Proof (of Claim 3): Note that this is an information-theoretic argument based on A’s
lack of knowledge about the values of the random oracle on points it has not (yet) queried.
Since A is all-powerful, we may as well dispense with f, f−1 and simply assume that when
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A gets the challenge ciphertext y∗ it immediately recovers s∗||t∗ = f−1(y∗) and that when
A submits a decryption query y it already knows s||t = f−1(y).1 Let m∗ be the message
encrypted to give the challenge ciphertext (note that even an all-powerful A does not know
m∗ unless it queries G(r∗)), and let s∗1, s

∗
2, r

∗, t∗ be defined in the natural way based on
y∗. We focus on a particular decryption query y that A makes after getting the challenge
ciphertext (with s1, s2, r, t defined in the natural way), and show that the probability that y
is exceptional is negligible. Since A makes at most polynomially-many decryption queries,
this suffices to prove the claim.

Consider the query y where s||t = f−1(y), and assume that y is likely to be invalid
(recall, this is either because A has not queried H ′(r||m) or because A has not queried
H(s)). We show that y is invalid with all but negligible probability by considering the
possible cases:

Case 1: A has not queried H ′(r||m) and r = r∗ and m = m∗. Since (r,m) = (r∗,m∗),
we also have s1 = s∗1. If the ciphertext is not invalid, then we must have s2 = s∗2 and hence
t = t∗ as well. But this would imply that y = y∗, and A is prohibited from querying the
decryption oracle with the challenge ciphertext.

Case 2: A has not queried H ′(r||m) and r 6= r∗. In this case, the value of H ′(r||m) is
completely random given A’s view of the experiment (note that H ′(r||m) was not queried
during the course of constructing the challenge ciphertext, either). Thus, the probability
that y is valid is the probability that H ′(r||m) is equal to s2, which is 2−|s2| = 2−k1 and
hence negligible.

Case 3: A has not queried H ′(r||m) and m 6= m∗. The argument in this case is exactly
as in the previous case, so we omit it.

Case 4: A has not queried H(s) and s = s∗. Since we must have y 6= y∗, this implies
that t 6= t∗ and hence r 6= r∗. The only way y can be valid is if H ′(r||m) = s2 = s∗2, where
s∗2 = H ′(r∗||m∗). Thus, y is valid only if A has managed to find a different input hashing to
the same k1-bit value s∗2. Since A makes only polynomially-many queries to H ′, this occurs
with only negligible probability.

Case 5: A has not queried H(s) and s 6= s∗. In this case, the value of H(s) is
completely random from the point of view of A (note that H(s) was not queried when the
challenge ciphertext was constructed, either). Thus, the value of r is completely random
from the point of view of A, and so the probability that A has queried H ′(r||m) is negligible.
Assuming A has not queried H ′(r||m), we reduce to one of the cases considered previously.

Given the above claim, we now prove the theorem in a manner similar to the proof of
Theorem 1 (as well as the proof given in the previous lecture). We will be a little informal
from now on, but the reader should be able to fill in the missing details (indeed, the difficult
part of the proof is the above claim). Note that A has no information about the message that
was encrypted to give the challenge ciphertext unless it queries G(r∗). Also, the probability

1One may wonder why A needs to submit a decryption query if it is all powerful. The point is that in
this claim we are interested in the probability a particular event which is independent of the security of the
encryption scheme (indeed, if A is all-powerful than it can “break” the encryption scheme anyway). This
claim will be used below to prove the actual security of the scheme for a ppt A.
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that A queries G(r∗) without first querying H(s∗) is negligible (since A has no information
about r∗ until it queries H(s∗), and A makes only polynomially-many queries to G). The
preceding two statements are true even if A is all-powerful. So, letting query be the event
that A queries both H(s∗) and G(r∗) we have:

AdvA(k) ≤ Pr[query] + negl(k).

We show that Pr[query] is negligible by giving an informal description of a ppt algorithm
B which uses A as a subroutine and tries to invert f on a given point y∗ chosen at random
from the domain of f . B will simulate the random oracle queries of A in the natural way,
and when A submits messages (m0,m1) to its encryption oracle, B returns the challenge
ciphertext y∗ to A. More interesting is B’s simulation of the decryption oracle for A (recall
that B does not know how to compute f−1): upon receiving decryption query y, B searches
through the list SH′ of queries that A has made thus far to H ′. For each (ri,mi) ∈ SH′ , B
first computes

si = (G(ri)⊕mi)||H
′(ri||mi).

Next, if si 6∈ SH (i.e., A has not queried H(si)), B returns ⊥. Otherwise, B computes

ti = H(si) ⊕ ri and then checks whether y
?
= f(si||ti) (note that B can evaluate f in the

forward direction). If this test succeeds for a particular pair (ri,mi), then B returns mi to
A as the (correct) decryption of y. If the test fails for every i, B returns ⊥.

At the end of the experiment, B looks through the lists SH and SG. For each si ∈ SH

and rj ∈ SG, B computes ti,j = rj ⊕ H(si) and checks whether f(si||ti,j)
?
= y∗. If this is

true for any pair, then B outputs si||ti,j as the (correct) answer.
The proof concludes using the following observations: (1) until query occurs, the only

difference between the view of A in a real experiment and the view of A as simulated by
B occurs when A makes an exceptional query (since, in this case, B returns ⊥ but the
decryption query was valid). However, by the claim proven earlier, this occurs with only
negligible probability. Thus, (2) the probability of query in the experiment as simulated
by B is negligibly close to Pr[query] (i.e., the probability of query in the real experiment).
Finally, (3) B succeeds in inverting y∗ whenever query occurs. Since f is assumed to be a
trapdoor permutation family, putting the above observations together shows that Pr[query]
is negligible.
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