
CMSC 858K — Advanced Topics in Cryptography April 1, 2004

Lecture 17

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 “Limitations” of NIZK Proof Systems

In the NIZK proof systems we have seen, we have assumed that the prover and verifier
share a common random string (CRS). Although in many applications of NIZK such an
assumption presents no problem (e.g., in the application to chosen-ciphertext-secure public-
key encryption, the receiver chooses a random string and includes it in her public key), in
the general case it is not clear where this string comes from (if no trusted third-party is
assumed). A natural question is whether NIZK can be achieved without a common random
string. In fact, it is easy to see that this is impossible for any “non-trivial” language:

Lemma 1 NIZK proofs are impossible without a CRS for any language L 6∈ BPP.

Proof (Sketch) Let (P, V) be an NIZK proof system for some language L ∈ NP , with
polynomial-time simulator Sim. For simplicity, we assume the protocol has perfect com-
pleteness and negligible soundness error, although these assumptions are not necessary. Our
goal is to prove that L ∈ BPP . By definition of NIZK, for any x ∈ L the distribution of
proofs π output by P(1k, x, w) (where w is a witness for x) is indistinguishable from the
distribution of proofs π output by Sim(1k, x). In particular, we have V(Sim(1k, x), x) = 1
with probability negligibly close to 1 for x ∈ L (this follows from perfect completeness).

We show how to decide membership in L using a ppt algorithm A (by definition, this
implies L ∈ BPP). A works as follows: given x, it computes π ← Sim(1k, x) and outputs 1
iff V(π, x) = 1. By what we have said above, the probability that A outputs 1 when x ∈ L
is negligibly close to 1. On the other hand, soundness of the proof system implies that the
probability that A outputs 1 when x 6∈ L is negligible (since otherwise we have an easy way
to “fool” V into accepting a proof of a false statement).

It is instructive to see where the previous proof fails when a common random string
r is available. In that case the simulator gets to choose r, so a simulator which outputs
“valid-looking” proofs for false statements does not contradict the soundness of the NIZK
proof system (since soundness holds with respect to the fixed string r that the cheating
prover cannot change).

The above demonstrates that interaction is necessary if we want to have zero-knowledge
protocols which do not rely on any set-up assumptions (such as a common random string).

2 Zero-Knowledge (Interactive) Proof Systems

Note: Definitions of zero-knowledge are quite subtle and, although we will do our best to
be accurate, we may omit some details for simplicity. The interested reader is referred to

17-1

other works [2, 3] for more details and a more rigorous and careful treatment.
We first define the notion of zero knowledge. Note that the definition is more complex

than in the non-interactive case because in the latter case we only need to consider the
proofs generated by a legitimate (honest) prover; in the interactive case, on the other hand,
we must also consider the actions of a prover when interacting with a dishonest verifier who
may not follow the protocol.

Definition 1 A pair of ppt algorithms (P,V) is called a zero-knowledge (ZK) proof system

for a language L ∈ NP (with Lk
def
= L ∪ {0, 1}≤k) if it satisfies the following properties:

1. (Completeness) For all k, all x ∈ Lk, and all witnesses w for x,

Pr[V(1k, x) accepts when interacting with P(1k , x, w)] = 1.

2. (Soundness) For all x 6∈ Lk and all (even all powerful) P∗, the following is negligible:

Pr[V(1k, x) accepts when interacting with P∗(x)].

3. (Zero knowledge) For all ppt (cheating verifiers) V ∗, there exists an (expected)
polynomial time simulator Sim such that the following are computationally indistin-
guishable for any x ∈ Lk and witness w for x:

• the view of V∗(1k, x) when interacting with P(1k, x, w);

• the output of Sim(1k, x).

♦

Note that the simulator is given exactly what the verifier knows. Thus, the intuition behind
a ZK proof is that “anything a poly-time cheating verifier can learn from its interaction
with P it could learn on its own, anyway (in essentially the same amount of time)”. In the
definition above, we allowed Sim to run in expected polynomial time rather than requiring
it to run in (strict) polynomial time.1 Also, the above definition considers only uniform
poly-time cheating verifiers; the “standard” definition, however, requires the zero-knowledge
condition to hold even for non-uniform poly-size cheating verifiers (i.e., poly-time verifiers
with auxiliary inputs) for good reason. (We have chosen to ignore the issue for ease of
presentation.) See [2, 3] for further details.

We first show a ZK proof system for the language of graph isomorphism.

Definition 2 Let G1(V1, E1) and G2(V2, E2) be two graphs, where Vi is the set of vertices
and Ei is the set of edges of Gi. The graphs G1 and G2 are isomorphic (denoted by G1 ≈ G2)
if there exists a permutation ϕ : V1 → V2, such that (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.
Such a ϕ is called an isomorphism from G1 to G2. We also let ϕ(G1) denote the graph
obtained by “permuting” the vertices of G1 according to ϕ and preserving edges; clearly,
G2 = ϕ(G1) (hopefully, using ϕ to refer to a permutation of the vertex set of G1 as well as
to a permutation of the graph G1 will not cause confusion). ♦

1Allowing the simulator to run in expected poly-time is somewhat “controversial”, and certainly strict
polynomial time simulation is preferable. However, the only currently-known way to achieve “reasonably-
efficient” ZK protocols is to allow expected poly-time simulation. For more discussion, see [2] or [1].

17-2

Define the language graph isomorphism by L
def
= {(G1, G2) | G1 ≈ G2}. Clearly, we have

L ∈ NP (since it is easy to check that a given isomorphism is valid). Consider the following
proof system for L: the prover begins with G1, G2, and an isomorphism ϕ from G1 to G2;
the verifier knows only G1, G2. The protocol proceeds as follows:

1. P chooses a random permutation ϕ′, and sends H = ϕ′(G1) to V.

2. The verifier chooses a random b ∈ {1, 2} and sends b to P.

3. We assume the verifier sends a b ∈ {1, 2} (any other response can be taken, by
default, to represent a “1”), and the prover will send an isomorphism from Gb to H.
In particular, if b = 1 then the prover sends ϕ′; if b = 2, the prover sends ϕ′ ◦ ϕ−1

(i.e., the composed permutation).

4. The verifier receives a permutation ϕ′′ and accepts iff ϕ′′(Gb)
?
= H.

Theorem 2 The above is a zero-knowledge protocol (with soundness error 1/2) for graph
isomorphism.

Proof Clearly, P and V can be implemented in polynomial time. We now argue com-
pleteness. Assume the prover acts honestly, and so H = ϕ′(G1) for some permutation ϕ′.
If b = 1 then the verifier clearly accepts. If b = 2, then the verifier also accepts since in this
case ϕ′′(G2) = ϕ′ ◦ ϕ−1(G2) = ϕ′(G1) = H.

We now show that the above protocol achieves soundness error 1/2 (meaning that if
G1, G2 are not isomorphic, then no prover can make a verifier accept with probability
better than 1/2). Assume G1 6≈ G2, and let H be the graph sent by the prover in the first
round. Note that at most one of G1 ≈ H or G2 ≈ H can be true (if they are both true,
then by transitivity we have G1 ≈ G2 which we know is not the case). So the prover can
respond correctly to at most one of the verifier’s possible challenges sent in the third round,
and thus will succeed in making the verifier accept with probability at most 1/2. (The
soundness error is not negligible, as required by Definition 1; however, we discuss below an
easy way to modify the protocol to achieve negligible soundness error.)

The most interesting property to consider is the zero knowledge of the above protocol.
To that end, we show the following simulator for any cheating verifier V ∗ (recall from the
definition that the simulator is allowed to depend — in fact, must depend — on the verifier):

Sim(1k, (G1, G2))

fix random coins ω for V ∗

for i = 1 to k:
choose a random permutation ϕ′

b← {1, 2}
H = ϕ′(Gb)
run V∗(1k, (G1, G2),H;ω) to obtain its response b′

if b = b′ output view (ω,H, b, ϕ′) and stop
if none of the above iterations have succeeded, output ⊥

Fix (G1, G2) ∈ L (recall that Definition 2 only requires simulation in this case). We first
analyze the probability that Sim outputs ⊥. In any given iteration of the inner loop and

17-3

for any value of ω, note that the value of b chosen by the simulator is perfectly independent
of H: the graph H is a random isomorphic copy of Gb, but that has the same distribution
as a random isomorphic copy of Gb̄ (since G1 ≈ G2). That means that the value of b is
independent of the view of V ∗ in line 4 of the inner loop. Therefore, the probability that
b′ = b is exactly 1/2. Overall, then, the probability that we never have b = b′ is 2−k, which
is negligible. So, Sim outputs ⊥ with only negligible probability.

We next claim that, conditioned on Sim not outputting ⊥, the output of Sim is identically
distributed to the view of V∗. To see this, let us consider the elements of the view (ω,H, b, ϕ′)
one-by-one: clearly, ω is a random string having the same distribution as ω in a real
interaction of V∗ with P. The next component, H, is a random isomorphic copy of Gb for
some b, but we have already noted above that this is distributed identically to a random
isomorphic copy of G1 (which is what P sends in the real protocol). The challenge bit b is
then a deterministic function of ω and H (since we have already fixed the coins ω of V ∗),
and in both the real and simulated experiments is equal to V ∗(1k, (G1, G2),H). Finally, in
the simulation ϕ′ is uniformly distributed among isomorphisms mapping Gb to H; again,
this is exactly as in a real execution of the protocol.

We remark that the above simulator runs in strict polynomial time.

The proof system presented above has soundness error 1/2, but it is easy to make the
soundness error as small as desired (and, in particular, negligible): simply repeat the above
protocol ` times to achieve soundness error 2−`. Setting ` = ω(log k), the protocol can still
be implemented in polynomial time and the soundness error becomes negligible.

We need to be careful, however, that in changing the protocol we do not destroy its
zero-knowledge property! There are two natural ways to implement the `-fold repetition
suggested above: the first is to run the ` instances of the protocol in parallel : in round 1 the
prover sends ` different graphs H1, . . . ,H` (each computed using an independent isomor-
phism); in round 2 the verifier replies with ` challenges b1, . . . , b`, and in round 3 the prover
responds to each challenge as in the original protocol. The second natural possibility is to
run ` instances of the protocol sequentially in the obvious way. A drawback of the latter
method is that the round complexity becomes O(`), whereas when using the first method
the round complexity remains the same (i.e., three rounds) as in the original protocol.

Unfortunately, running the above protocol in parallel for ` = ω(log k) is not known to
result in a zero knowledge protocol. (It is not known definitively that the protocol is not 2

zero knowledge, but there is no known way of proving that the protocol is zero knowledge,
either.) To see the difficulties that arise, imagine adapting the simulator given earlier for the
case of `-fold parallel repetition. Now, the simulator will “guess” in advance the challenge
bits b1, . . . , b`, construct graphs H1, . . . ,H` in the appropriate way, and then hope that the
output b′1, . . . , b

′
` of V∗ satisfies b′i = bi for all i. But the probability that this occurs is 2−`

(note that we cannot assume that V∗ uses the same challenge bits every time — for all we
know, V∗ may choose its challenge bits based on all the graphs H1, . . . ,H` sent by P in
the first round). If ` = O(log k) then 2−` is inverse polynomial, and so by repeating this
process some sufficiently-large polynomial number of times the simulator will succeed with
all but negligible probability (as in the case of the original simulator). On the other hand,
if ` = ω(log k) then 2−` is negligible and so any simulator of this sort running in (expected)

2Although there are reasons to believe that constructing a simulator for this protocol will be “difficult” [4].

17-4

polynomial time will only succeed in outputting a valid view with negligible probability.
But we need ` = ω(log k) to obtain negligible soundness error. . .

The good news is that `-fold sequential repetition of the above protocol does result in a
zero-knowledge protocol for any ` = poly(k) (note that we must have ` = poly(k) in order
for the protocol to run in polynomial time).3 The simulator for this protocol will essentially
run the simulator given earlier, ` times sequentially. For completeness, we describe the
simulator here but leave the analysis to the reader:

Sim(1k, (G1, G2))

fix random coins ω for V ∗

let view0 = ω
for i = 1 to `:

for j = 1 to k:
choose a random permutation ϕ′

b← {1, 2}
H = ϕ′(Gb)
run V∗(1k, (G1, G2), viewj−1,H) to obtain its response b′

if b = b′, let viewj = viewj−1||(H, b, ϕ′) and exit loop
if none of the above iterations have succeeded, output ⊥

output view`

3 Honest-Verifier Zero Knowledge

A weaker definition of zero knowledge which is often useful is that of honest-verifier zero
knowledge (HVZK). In this case, we only require simulation for a verifier who honestly
follows the protocol, but may later try to learn some information (that it wasn’t supposed
to) from the transcript. This models so-called “honest-but-curious” adversaries who act in
this way, and also models adversaries who eavesdrop on an honest execution of a protocol
(between an honest verifier and the prover).

Definition 3 A pair of ppt algorithms (P,V) is called a zero-knowledge (ZK) proof system

for a language L ∈ NP (with Lk
def
= L ∪ {0, 1}≤k) if it satisfies the following properties:

1. (Completeness and soundness) As in Definition 1.

2. Honest-verifier zero knowledge There exists a polynomial time simulator Sim such
that the following are computationally indistinguishable for any x ∈ Lk and witness
w for x:

• the view of V(1k, x) when interacting with P(1k, x, w);

• the output of Sim(1k, x).

♦

We do not allow for expected poly-time simulation since it is not needed to get efficient
protocols (since the zero-knowledge property was weakened).

3In fact, auxiliary-input zero-knowledge (mentioned earlier but not formally defined in these notes) is
always preserved under sequential composition; see [2, 3].

17-5

We now show that `-fold parallel repetition of the previously-shown protocol for graph
isomorphism is honest-verifier zero knowledge (for any polynomial `):

Sim(1k, (G1, G2))

choose random permutations ϕ′
1, . . . , ϕ

′
`

choose random b1, . . . , b` ← {1, 2}
for all i ∈ {1, . . . , `}: Hi = ϕ′

i(Gb1)
output (H1, . . . ,H`; b1, . . . , b`;ϕ

′
1
, . . . , ϕ′

`)

Note that the simulator’s job here is much easier — because we are only concerned with
simulating the view of an honest verifier, we may assume that the challenge bits b1, . . . , b`

are chosen uniformly and independently of the graphs H1, . . . ,H` sent in the first round.

References

[1] B. Barak and Y. Lindell. Strict Polynomial Time in Simulation and Extraction. STOC
2002. Full version available at http:
eprint.iacr.org.

[2] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University
Press, 2001.

[3] O. Goldreich. Tutorial on Zero Knowledge. Available at
http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

[4] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Computing 25(1): 169–192 (1996).

17-6

