
CMSC 858K — Advanced Topics in Cryptography April 6, 2004

Lecture 18

Lecturer: William Gasarch Scribe(s): Avinash J. Dalal, Julie Staub

1 Summary — What is Private Information Retrieval?

In this set of lecture notes we begin a brief discussion of Private Information Retrieval

(PIR). We begin by defining what PIR is about. We then present two PIR protocols, and
give simple proofs that these two protocols are indeed correct. Finally, we discuss some
generalizations of these basic schemes.

Let us begin by introducing the problem. Suppose we have a database DB = (x1, . . . , xn),
viewed as an n-bit string (i.e., the database has n entries, with each entry being a single
bit). Suppose further that a user wants to learn the ith bit of the database without leaking
to the database administrator1 any information about i (in an information-theoretic sense).

Informally, this is known as the PIR problem. Note that there does exist a solution:
simply send to the user the contents of the entire database. The user can discard all the
entries other than the one it is interested in, and the database clearly learns no information
about which entry this is. The communication complexity of this solution, however, is O(n).
The PIR problem asks: can we do better?

It is actually not too difficult to show that it is impossible to do better in the above
scenario if we require information-theoretic privacy for the user (i.e., even an all-powerful
database learns nothing about the bit i the user is interested in) [1]. Thus, we must relax
the scenario a bit to allow for more efficient solutions. One possibility that we explore here is
to assume that there are multiple (identical) copies of the database, and the administrators
of these databases cannot communicate with each other. We see that this allows for much
more efficient solutions (in terms of their communication complexity).

2 A First Approach

We discuss here an approach yielding schemes with communication complexity d
√

n when
there are 2d copies of the databases. The scheme will be illustrated first for the cases of
d = 2 and d = 3 and we then discuss its extension to the general case.

A 4-Database PIR Protocol. Suppose we have 4 identical copies of the data in databases
DB1, DB2, DB3, DB4. We show a PIR protocol with O(

√
n) communication complexity in

this setting. View the data (which is an n-bit string) as a
√

n × √
n array {xi,j}1≤i,j≤

√
n

(we assume for simplicity that n is a square). When the user wants to learn bit xi∗,j∗ at
position (i∗, j∗) he proceeds as follows:

1. Choose two random strings S, T each of length
√

n, and view these as subsets of
{1, . . . ,√n} in the natural way.

1From now on, “the database” will refer to the data itself as well as to the “administrator” of this data.

18-1



2. Let S′ = S ⊕ {i∗} and T ′ = T ⊕ {j∗}. Here, we let

S ⊕ {s} def
=

{

S ∪ {s} s 6∈ S

S \ {s} s ∈ S
.

We now have four subsets (equivalently,
√

n-bit strings) S, T, S ′, T ′.

3. Send:

• (S, T ) to DB1;

• (S, T ′) to DB2;

• (S′, T ) to DB3; and

• (S′, T ′) to DB4.

4. Database k receives a pair of subsets (Ŝk, T̂k), and sends to the user the single bit:

Xk
def
=

⊕

i∈Ŝk ,j∈T̂k

xi,j.

Here, of course, ⊕ represents the bit-wise xor operation.

5. Upon receiving the responses from the databases, the user computes

xi∗,j∗ = X1 ⊕ X2 ⊕ X3 ⊕ X4.

We first show that the above protocol is correct ; i.e., that the user correctly recovers the
bit of interest. To see this, note that:

X1 ⊕ X2 ⊕ X3 ⊕ X4 =
⊕

i∈S,j∈T

xi,j ⊕
⊕

i∈S′,j∈T

xi,j ⊕
⊕

i∈S,j∈T ′

xi,j ⊕
⊕

i∈S′,j∈T ′

xi,j.

Now, we claim that for each (i, j) 6= (i∗, j∗), the value xi,j appears an even number of times
in the above sum; in particular:

• If i 6= i∗ and j 6= j∗ then (i, j) is in either zero or all of the sets S ×T , S × T ′, S′ ×T ,
S′ × T ′.

• If i = i∗ but j 6= j∗ (or vice versa) then (i, j) is in either zero or exactly two of the
sets S × T , S × T ′, S′ × T , S′ × T ′.

Thus, all of these contributions cancel out. On the other hand, the value xi∗,j∗ appears an
odd number of times in the above sum, and hence X1 ⊕ X2 ⊕ X3 ⊕ X4 = xi∗,j∗, as desired.

We next argue that the above protocol is private; this is straightforward since each
database simply receives a pair of uniformly-distributed

√
n-bit strings. (It is easy to see

that S, T are uniformly distributed. For the case of, e.g., S ′, note that S ′⊕{i∗} is uniformly
distributed since S is uniformly distributed; the set S is acting as a “one-time pad” of sorts.)

An 8-Database PIR Protocol. As Dr. Gasarch would ask: “Can we do better?”. In
particular, what if we had more copies of the database? In fact, we can generalize the
above protocol to one with communication complexity O( 3

√
n) when there are 8 databases

DB1, . . . , DB8 available. Here, we view the data as a 3
√

n× 3
√

n× 3
√

n cube {xi,j,k}1≤i,j,k≤ 3
√

n.
When the user wants to learn the bit xi∗,j∗,k∗ at position (i∗, j∗, k∗) he proceeds as follows:

18-2



1. Choose three random strings R,S, T each of length 3
√

n, and view these as subsets of
{1, . . . , 3

√
n} in the natural way.

2. Let R′ = R ⊕ {i∗}, S′ = S ⊕ {j∗}, and T ′ = T ⊕ {k∗}, where the notation is as
in the previous section. We now have eight subsets (equivalently, 3

√
n-bit strings)

R,R′, S, T, S′, T ′.

3. Send:
(R,S, T ) to DB1 (R′, S, T ) to DB5

(R,S, T ′) to DB2 (R′, S, T ′) to DB6

(R,S′, T ) to DB3 (R′, S′, T ) to DB7

(R,S′, T ′) to DB4 (R′, S′, T ′) to DB8

4. Database w receives subsets (R̂w, Ŝw, T̂w), and sends to the user the single bit:

Xw
def
=

⊕

i∈R̂w ,j∈Ŝw,k∈T̂w

xi,j,k.

5. Upon receiving the responses from the databases, the user xor’s them all together to
compute the desired bit.

Proofs of correctness and privacy are exactly as before, and are therefore omitted.

2.1 Extending the Scheme

It should be clear that the above approach generalizes to give a 2d-database scheme with
communication complexity d

√
n, for any integer d ≥ 1. The database is viewed as a d-

dimensional hypercube ( d
√

n)
d
, and then the approach above is applied. For details, see [1].

3 Improving the Previous Approach

Here, we show how the last scheme can be improved: we show a scheme with the same
communication complexity but using only two databases. The basic intuition leading to
this improvement is to balance the communication between the user and the databases.
In the previous scheme, the user sends O( 3

√
n) bits to each database, while each database

responds with a single bit. By shifting more communication onto the databases, we are able
to reduce the number of databases needed.

Recall in the previous scheme (of Section 2), the user chooses initial random sets R,S, T

and then sends a triple of sets (based on these sets as well as the index of interest) to each
of the eight databases. We show how the information sent by these eight databases can in
fact be sent by two databases. . . but still without leaking any information to either of these
databases about the index the user is interested in.

Let R,S, T,R′, S′, T ′ be as in Section 2. The user will send R,S, T to the first database,
and R′, S′, T ′ to the second. (Note that these leak no information to either database about
the index the user is interested in.) We would like the databases to now “simulate” the
actions of the eight databases in the original scheme. Clearly, it is easy for the first database

18-3



to simulate DB1 from before and equally easy for the second database to simulate DB8.
What about the other databases? Consider how the first database might simulate the
actions of DB2. To do this, it seemingly needs to know T ′; on the other hand, if it knew T ′

then (using T ) it would be able to determine k∗ and this would leak information about the
user’s query. Instead, what it will do is try all possible values for T ′, and simulate DB2 for
each possibility. Since T and T ′ differ in only one position, there are only 3

√
n possibilities

for T ′. So, simulating the response of DB2 for each of these possibilities only requires an
additional 3

√
n bits (one bit per possibility).

In exactly this way, the first database can simulate the responses of DB3 and DB4. The
total communication it sends to the user is therefore 3 3

√
n + 1 bits.

The second database simulates DB5, DB6, and DB7 in a similar manner (and acts
exactly as DB8 would). So it also sends 3 3

√
n + 1 bits to the user. At this point, it is clear

that the user can recover the desired answer (it just picks out the appropriate bits from
the two responses, and then xor’s them together as in the previous scheme), and the total
communication complexity is O( 3

√
n) bits.

3.1 Extending this Approach for More Databases

Let us try to generalize the approach of the previous section. Abstractly, we can view the
eight triples of sets that the user sends to the eight databases in the original scheme as binary
strings of length three: the tuple (R,S, T ) corresponds to (0, 0, 0), (R,S, T ′) corresponds
to (0, 0, 1), etc. In the improved scheme, we send the “sets” (0, 0, 0) to the first database
and let it simulate (0, 0, 1), (0, 1, 0), and (1, 0, 0). We also send the “sets” (1, 1, 1) to the
second database and let it simulate (1, 1, 0), (1, 0, 1), and (0, 1, 1). The key point is that
each database simulates queries of Hamming distance 1 from the query it receives. This is
what allows the total communication complexity to remain O( 3

√
n).

Consider the 16-database, O( 4
√

n)-bit PIR protocol which is the extension of the schemes
in Section 2. Here, the user sends “queries” in the form of 4-bit strings (i.e., the “query”
(0, 0, 0, 0) represents four random subsets (R,S, T,W ) of {1, . . . , 4

√
n}). If we try to apply

the improvement above, we see that we cannot do it using only two databases: if we send
(0, 0, 0, 0) to the first database and ask it to simulate query (1, 1, 0, 0), for example, then
it will have to try 4

√
n × 4

√
n different possibilities (namely, 4

√
n possibilities for each of R′

and S′) and the communication complexity will be too high. A little thought shows that in
order to implement this improvement we need four databases: the user will send (0, 0, 0, 0)
to the first, (1, 1, 0, 0) to the second, (0, 0, 1, 1) to the third, and (1, 1, 1, 1) to the fourth and
now every 4-bit string in within Hamming distance 1 of at least one of these representatives.

For further information, see [1] or the extensive PIR references available at [2].

References

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval.
Journal of the ACM 45(6): 965–981, 1998.

[2] W. Gasarch. http://www.cs.umd.edu/~gasarch/pir

18-4


