
CMSC 858K — Advanced Topics in Cryptography April 8, 2004

Lecture 19

Lecturer: Jonathan Katz Scribe(s):
Nikolai Yakovenko
Jeffrey Blank

1 Introduction and Preliminaries

In a previous lecture, we showed a zero-knowledge (ZK) proof system for the language of
graph isomorphism. Our goal here is to show a ZK proof system for any language inNP . To
do so, it suffices to show a ZK proof system Π for any NP-complete language L (note that
graph isomorphism is not believed to be NP-complete); given such a Π and any L ′ ∈ NP ,
we then obtain a ZK proof for L′ by (1) reducing the common input x′ (which is supposedly
in L′) to a string x such that x′ ∈ L′ ⇔ x ∈ L; and then (2) running the original proof
system Π on common input x. (Actually, if we want this to work for a poly-time prover
then we need the reduction from L′ to L to also preserve witnesses; i.e., there should be
poly-time computable functions f1, f2 such that x′ ∈ L′ ⇔ f1(x

′) ∈ L and if w′ is a witness
for x′ ∈ L′ then f2(w

′) should be a witness that f1(x
′) ∈ L.)

In this lecture, we show a ZK proof system for the language of 3-colorability, which is
NP-complete. Before doing so, we will first define the notion of a commitment scheme.

1.1 Commitment Schemes

Informally, a commitment scheme provides a way for a sender to commit to a value without
revealing it to a receiver. At some later point, however, the sender can reveal his committed
value and the receiver will be convinced that the sender did not “change his mind”. A good
analogy is the following commitment scheme which works when the parties are sitting at
a table together: the sender writes his value on a piece of paper, places it in an envelope,
seals the envelope, and places the envelope on the table. Assuming normal paper and ink,
the sender certainly cannot change the value inside the envelope (i.e., he is committed to
that value) yet the receiver cannot learn the value while the envelope remains unopened.
Unfortunately, this only works when the parties are in the room together, but does not lead
to a protocol that can be run over the Internet!

We refer to the properties sketched above as hiding and binding : The hiding property
refers to the receiver’s inability to learn the value after the sender has committed, but before
he has revealed his commitment. The binding property refers to the sender’s inability to
change the value after committing to it.

If we try to formally define these notions, it turns out that there are two different
“flavors” of commitment schemes one can consider: the first ensures that the binding
property holds even for an all-powerful sender, but the hiding property “only” holds for
a computationally-bounded1 receiver. (We may also say that binding holds information-

1While one choice might be to equate “computationally-bounded” with ppt, for the application to ZK
proofs we will need hiding to hold with respect to polynomial-size circuits (i.e., we need a non-uniform
hardness assumption).

19-1

theoretically, while hiding holds only computationally.) Commitment schemes of this sort
are called standard. The second type of commitment satisfies the hiding property even for
an all-powerful receiver, but now the binding property only holds for a computationally-
bounded sender. (I.e., this scheme achieves information-theoretic hiding, but only compu-
tational binding.) Such commitment schemes are termed perfect.2 The scheme one uses will
depend on the application, as we will see.

For now, we define only a standard commitment scheme. In general, a commitment
scheme may be interactive, but for simplicity we give a definition only for the case of
non-interactive commitment. Here, the sender outputs a pair (com, dec) consisting of a
commitment and a decommitment: sending com to the receiver constitutes the commitment
phase and sending dec to the receiver constitutes the decommitment phase.

Definition 1 A standard commitment scheme consists of a pair of ppt algorithms (S,R)
satisfying the following:

Correctness For all k and all b ∈ {0, 1}:

Pr[(com, dec)← S(1k, b) : R(1k, com, dec) = b] = 1.

Binding The following is negligible even for an all-powerful S ∗:

Pr[(com, dec, dec
′) := S∗(1k) : R(1k, com, dec) = 0 ∧R(1k, com, dec

′) = 1].

Hiding The following is negligible for any family {R∗

k} of polynomial-size circuits (see
footnote 1):

∣

∣

∣

∣

Pr[b← {0, 1}; (com, dec)← S(1k, b) : R∗

k(com) = b]−
1

2

∣

∣

∣

∣

.

♦

We remark that it is easy to extend the above definition to string commitment rather
than just bit commitment. Furthermore, it is easy to construct a string commitment scheme
from any bit commitment scheme: just commit to the bits of the string one-by-one. Here,
the hiding definition may be more easily thought of in terms of an “indistinguishability-
type” game as in the case of encryption: an adversary submits two strings m0,m1 to
a “commitment oracle” which returns a commitment of mb for random b; the adversary
succeeds if it guesses the value of b, and we say the commitment scheme is secure if every
poly-size family of circuits succeeds with probability negligibly close to half.

We do not pursue constructions of commitment schemes here, and instead defer that to
another lecture. Here, we will instead be more interested in using a commitment scheme
(as a black box) to construct a ZK proof system.

2In case you are wondering: it is not too difficult to show the impossibility of simultaneously achieving
information-theoretic binding and hiding. At the other extreme, schemes achieving both computational
binding and hiding may be suitable for some applications, but since we can (for the most part) achieve the
stronger notions of security anyway, this case is not so interesting.

19-2

2 A ZK Proof System for 3-Colorability

The language of 3-colorability is the set of graphs which can be “3-colored”; i.e., graphs for
which the colors “read”, “blue”, and “green” can be assigned to its vertices such that no
two adjacent vertices (vertices sharing an edge) have the same color. Formally, a coloring
of a graph G can be viewed as function φ from the vertices of G to the set {r, b, g} such
that if (u, v) is an edge in G, then φ(u) 6= φ(v). Deciding 3-colorability is known to be an
NP-complete problem.

We now show a ZK proof for 3-colorability: At the beginning of the protocol, both the
prover and verifier know the same graph G with n vertices, and the prover also knows a
3-coloring φ for this graph (we let φi denote φ(i); i.e., the color assigned to vertex i).

• First, the prover chooses a random permutation ϕ over the set {r, b, g}. He then
commits to the (permuted) coloring vertex-by-vertex, and sends the n commitments

ϕ(φ1) · · · ϕ(φn) .

• The verifier chooses a random edge (i, j) in G, and sends (i, j) to the prover.

• The prover sends decommitments to the ith and jth commitments that it sent in the
first round.

• The verifier recovers the decommitted values, denoted ϕi and ϕj . The verifier accepts
iff ϕi, ϕj ∈ {r, b, g} and ϕi 6= ϕj .

Note that the proof system satisfies completeness, since an honest prover using a valid
coloring will always cause the verifier to accept. Furthermore, (weak) soundness holds if the
commitment scheme is binding. To see this, assume for a moment that the commitments
are “perfect” (i.e., sealed envelopes) and let P ∗ be a cheating prover with G a graph that is
not 3-colorable. Then after the first round, P ∗ is committed to some assignment of vertices
to colors (we may assume that if a particular commitment is invalid in any way, then we
arbitrarily assign it the color “red”). Since the graph is not 3-colorable, there must then
be at least one edge (u, v) for which u and v are assigned the same color. So if the verifier
chooses this edge, he will reject the proof. The probability that the verifier chooses such
an edge is (at least) 1/|E| ≥ 1/n2, where |E| is the number of edges in G (it is at least
this probability because there might be more than one edge whose vertices are not colored
correctly). So, the prover fails to convince the verifier with probability at least 1/n2, which
is inverse polynomial (in the size of the graph). Of course, we need to also take into account
the fact that these are not “perfect” commitments; however, the probability that the prover
can open any of these commitments in more than one way is negligible (by the binding
property) so this decreases the probability that the verifier will accept by only a negligible
probability.

As usual, repeating the protocol sufficiently-many (but polynomially-many) times (se-
quentially if we want to preserve the ZK property3) yields a proof system with negligible
soundness error.

In the next two sections, we show that this proof system is zero knowledge.

3We rely here on the fact that the above proof system satisfies the stronger definition of auxiliary-input

zero knowledge; see Lecture 17 and [1].

19-3

2.1 Simulation for an Honest Verifier

First, we informally discuss why the above protocol is honest-verifier zero knowledge. (We
do not give a formal proof, since one will follow anyway from the stronger result we show
in the following section.) Imagine the following simulator, which receives only the graph G
(but no coloring); as usual, the simulator “guesses in advance” the challenge of the verifier:

• Choose a random edge (i, j) in G.

• Choose ϕi at random from {r, b, g} and ϕj at random from {r, b, g} \ {ϕi}. For all
k ∈ {1, . . . , n}, k 6= i, j, set ϕk = r. Generate commitments ϕ1 · · · ϕn to these n
values.

• Output the transcript ϕ1 · · · ϕn ; (i, j); ϕi, ϕj . (Actually, the last round should

include decommitments to ϕi, ϕj .)

Now, note that the “only” difference between the distribution on transcripts output by
the simulator, and the distribution on transcripts resulting from a real execution of the
protocol are that, in the former, all commitments other than ϕi, ϕj are to “r” while, in the
latter, all the commitments are to some valid 3-coloring. However, by the hiding property
of the commitment scheme, these two distributions are computationally indistinguishable.4

2.2 Simulation for a Dishonest Verifier

We now show, more formally, a simulator for an arbitrary ppt verifier V ∗.

Sim(1k, G)

fix random tape ω for V ∗

for i = 1 to |E|2:
choose random edge (u, v)
generate vector of commitments com as in previous section
run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output transcript as in previous section

if all previous iterations have failed, output ⊥

We now want to claim that, for all G,φ, the output distribution defined by Sim is
computationally indistinguishable from the distribution over real executions of the protocol.
The intuition is exactly as in the case of the ZK proof of graph isomorphism: we want to
claim that Sim outputs ⊥ with only negligible probability, and that conditioned on not
outputting ⊥ the transcripts looks “the same”. However, two differences arise here which
did not arise previously:

1. First, it is not immediately clear that Sim outputs ⊥ with only negligible probability.
To argue this, we would like to claim that in any iteration of the loop the probability
that (u∗, v∗) = (u, v) is 1/|E| (similar to the case of graph isomorphism). In the

4We remark that this is in contrast to the ZK proof system for graph isomorphism, where the simulated
transcripts were perfectly indistinguishable from real transcripts in the case of HVZK, and statistically

indistinguishable from real transcripts in the case of ZK.

19-4

case of graph isomorphism, however, the view of V ∗ was independent of the challenge
guessed by the simulator; here, this is no longer true since the vector of commitments
given to V ∗ does reveal the guess of Sim (in an information-theoretic sense). On the
other hand, since V ∗ runs in polynomial-time and the commitments are hiding we can
show that this does not make “too much difference”; this requires formal proof.

2. Second, in the case of graph isomorphism the transcripts were identically distributed
(conditioned on not outputting ⊥); here, though, the transcripts will (only) be com-
putationally indistinguishable.

We now give a (sketch of a) formal proof which will (we hope!) provide the interested
reader with all the necessary elements to construct a full proof. (The reader is also invited to
see [1].) First, consider the following modified “simulation” which is not really a simulation
at all since it will use the coloring φ used by the real prover.

Sim
′(1k, G, φ)

fix random tape ω for V ∗

for i = 1 to |E|2:
choose random edge (u, v)
Using φ, generate a vector of commitments com exactly like the honest prover
run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output transcript as in previous section

if all previous iterations have failed, output ⊥

We claim that (for all G,φ) the output distribution generated by Sim
′ is statistically-

close to the distribution of real executions of the protocol. The argument here is exactly as
in the case of graph isomorphism: note that now the “guess” of the simulator is information-
theoretically hidden from V ∗ (since the vector of commitments is for a valid 3-coloring, so
there is no way to tell which edge was guessed by Sim

′) and so the probability of outputting
⊥ is negligible; furthermore, conditioned on not outputting ⊥ the distributions are identical.
(We stress that the above does not constitute a valid simulation, however, since Sim

′ is given
φ. Instead, it is just a “mental experiment”.)

We next claim that (for all G,φ) the output distribution generated by Sim
′ is compu-

tationally indistinguishable from the output distribution generated by Sim. (By a hybrid
argument, this shows that the distribution generated by Sim is computationally indistin-
guishable from the real distribution, and completes the proof.) To see this, assume the
contrary. Then there is a poly-time distinguisher D∗ that can distinguish between the two
distributions with probability that is not negligible. But then we can create a poly-time dis-
tinguisher5 D that violates the hiding property of the commitment scheme as follows (we
use the “indistinguishability-based” characterization of the hiding property, as discussed

5In fact, the distinguisher we construct will be a poly-size circuit (and this is why we need to commitment
scheme to satisfy a non-uniform definition of security) because we will have to incorporate the graph G and
the coloring φ. Such subtleties are glossed over in this write-up.

19-5

earlier):

D(1k, G, φ)

fix random tape ω for V ∗

for i = 1 to |E|2:
1. choose random edge (u, v)
2. Choose random, different colors ϕu for u and ϕv for v and commit to these
3. for all other vertices, generate two vectors of length n− 2:

one in which every vertex (i.e., other than u, v) is colored red,
and one in which the vertices are colored using a random permutation ϕ of φ
subject to ϕ(u) = ϕu and ϕ(v) = ϕv

3. submit these messages to the commitment oracle and get back
a vector of n− 2 commitments
let com represent these commitments along with
the commitments to ϕu, ϕv (all in the correct order)

4. run V ∗(com;ω) to obtain challenge (u∗, v∗)
if (u∗, v∗) = (u, v) output 〈com; (u, v);ϕu, ϕv〉 as the transcript

if all previous iterations have failed, output ⊥
run D∗ on the resulting transcript, and output whatever D∗ outputs

The proof concludes by making the following observations: (1) if the commitments
returned by the “commitment oracle” are of the first type (where vertices other than u, v
are colored red) then the transcript given to D∗ is distributed exactly according to the
transcripts output by Sim; (2) if the commitments returned by the “commitment oracle” are
of the second type (where they form a commitment to a valid 3-coloring) then the transcript
given to D∗ is distributed exactly according to the transcripts output by Sim

′. Thus, (3) if
D∗ can distinguish between these, then D can distinguish what kind of commitments are
being given to it by its oracle. Since D runs in polynomial time, this is a contradiction.

References

[1] O. Goldreich. Foundation of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

19-6

