
CMSC 858K — Advanced Topics in Cryptography January 29, 2004

Lecture 2

Lecturer: Jonathan Katz Scribe(s):
Alvaro A. Cardenas
Avinash J. Dalal
Julie Staub

1 Summary

In the last set of notes the concept of a trapdoor permutation was discussed. In this set of
lecture notes we begin by defining a public-key encryption scheme, and what it means for
that scheme to be semantically secure. We show that if a public-key encryption scheme is
secure under this definition then the encryption algorithm cannot be deterministic. We then
define a hardcore bit and use it to build a provably-secure public-key encryption scheme.

2 Public-Key Cryptography

Definition 1 A public-key encryption scheme is a triple of PPT algorithms (Gen, E ,D),
where

1. Gen is the key generation algorithm. Gen(1k) outputs a pair (pk, sk). We assume for
simplicity that |pk| = k.

2. E is the encryption algorithm. Given a plaintext m from a message spaceM, algorithm
Epk(m) returns a ciphertext C of polynomial length p(k).

3. D is the decryption algorithm. Dsk(C) returns a message m or the symbol ⊥ repre-
senting incorrect decryption. Incorrect decryption can happen for example if C is not
a valid ciphertext. (We will assume for simplicity — unless stated otherwise — that
the decryption algorithm is deterministic.)

4. The public-key encryption scheme must satisfy correctness: i.e., for all m ∈M and
all possible (pk, sk) output by Gen, we have Dsk(Epk(m)) = m.

♦

In the following we assume that authentication of the public keys is possible and thus our
main security concern is an attacker with access to the public key who attempts to obtain
information about the plaintext from the ciphertext. Since the adversary has access to the
public key pk, she can encrypt any message she wants and thus this scenario is sometimes
known as a chosen plaintext attack (CPA).

Our following definition of a secure public-key encryption scheme is strong in the sense
that we do not only require that an adversary cannot obtain the plaintext m from the

2-1

knowledge of the public-key pk and the ciphertext C, but also that an adversary cannot ob-
tain any partial information about m (except probably some information about the length).
This security notion is known as semantic security or indistinguishability [3, 1].

The security of the scheme is stated as a game in which an adversary has the ability
to select two messages. One of the messages is randomly selected and encrypted. The
encryption is then called secure if the adversary cannot do better than a random guess in
finding out which message was encrypted. Before we formalize the game we recall what a
negligible function is.

Definition 2 A function ε(·) :
�
→ [0, 1] is negligible iff ∀ c > 0, there exists an Nc > 0

such that ∀ N > Nc we have ε(N) < 1/N c. ♦

An easier way of saying this is that ε(·) is negligible iff it grows smaller than any inverse
polynomial. A very common example of a negligible function is the inverse exponential,
ε(k) = 2−k. Note that 2−k = O(1/kc) for any c. We will use this definition of a negligible
function to explicitly define what it means for an encryption scheme to be secure.

Definition 3 A public-key encryption scheme (Gen, E ,D) is semantically secure if for all
ppt algorithms A, the following is negligible:

∣

∣

∣

∣

Pr

[

(pk, sk)← Gen(1k); (m0,m1)← A(pk);
b← {0, 1};C ← Epk(mb); b

′ ← A(pk,C)
: b = b′

]

−
1

2

∣

∣

∣

∣

.

♦

Theorem 1 If a public-key encryption scheme is semantically secure, then the encryption
algorithm is not deterministic.

Proof Consider an adversary who outputs (m0,m1) with m0 6= m1. When presented
with a ciphertext C, which is either an encryption of m0 or m1, compute C0 = Epk(m0). If
C = C0 output 0 else output 1. This adversary succeeds in guessing b (cf. the above game)
with probability 1; we use the fact that decryption succeeds with probability 1 and hence
the space of encryptions of m0 must be disjoint from the space of encryptions of m1.

In the first lecture we defined what one-way trapdoor permutations are. Intuitively a
one-way trapdoor permutation seems to be a good suggestion for a public-key encryption
scheme as it easy to evaluate the function (encrypt) and hard to invert without the trapdoor
(decrypt). More formally, given a one-way trapdoor permutation Gentd, it is tempting to
use the following encryption scheme: to generate keys, run Gentd(1

k) to obtain (f, f−1). Set
pk = f and sk = f−1. Set the encryption algorithm Ef (·) = f(·), and set the decryption
algorithm Df−1(·) = f−1(·). However, from Theorem 1 we can conclude that a one-way
trapdoor permutation cannot be used as a semantically secure public-key encryption scheme
because the evaluation algorithm (i.e., computing f(·)) is deterministic. Note in particular
that “textbook RSA” (where encryption is E

(N,e)
(m) = me mod N) is susceptible to the

adversary in the proof of Theorem 1. (It should also be clear, however, that the problems
of the above approach — and in particular the case of “textbook RSA” — go beyond the
fact that encryption is deterministic. For example, randomly padding the message before
encrypting is not sufficient to guarantee semantic security either.)

However not all hope for using one-way trapdoor permutations as a basis for a secure
encryption scheme is lost. First we will need to define hard-core bits.

2-2

3 Hard-Core Bits

Another problem with using one-way trapdoor permutations to encrypt (as suggested above)
is that they can potentially reveal some information about the input when we have access
to the output. For example, if f(x) is a one-way trapdoor permutation, then it is easy to
show that the function f ′(x1|x2) = x1|f(x2) (for |x1| = |x2|) is also a one-way trapdoor
permutation. Here, however, we see that f ′ reveals half of the bits of its input directly.
A hardcore bit of a one-way permutation is a bit of information that cannot be correctly
identified better than with random guessing. Hardcore bits help us to formalize the notion
of a single bit of information about the input x that is effectively obscured by the action of
a one-way trapdoor permutation. More formally we have:

Definition 4 Let H = {hk : {0, 1}k → {0, 1}}k≥1 be a collection of efficiently-computable
functions and let F = (Gentd) be a trapdoor permutation. H is a hard-core bit for F if
for all ppt algorithms A, the following is negligible (in k):

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x← {0, 1}k ; y = f(x) : A(f, y) = hk(x)]−

1

2

∣

∣

∣

∣

.

♦

Theorem 2 ([2]) Existence of hard-core bits. Let F = (Gentd) be a trapdoor permuta-
tion with f : {0, 1}k → {0, 1}k (for security parameter k). Consider the permutation family

F ′ = (Gen
′
td) with f ′ : {0, 1}2k → {0, 1}2k defined as f ′(x|r)

def
= f(x)|r, and the function

family H = {hk : {0, 1}2k → {0, 1}} defined by hk(x|r)
def
= x · r (where “·” represents the

binary dot product). Then F ′ is a trapdoor permutation with hard-core bit H.

Recall that if x = x1x2 . . . xk ∈ {0, 1}
k and r = r1r2, . . . rk ∈ {0, 1}

k then x · r
def
=

x1r1⊕x2r2⊕· · ·⊕xkrk =
⊕k

i=1
xiri (where ⊕ represents binary exclusive-or). For example,

1101011 · 1001011 = 1⊕ 0⊕ 0⊕ 1⊕ 0⊕ 1⊕ 1 = 0.

4 Public-Key Encryption From Trapdoor Permutations

In the following we assume for simplicity that M = {0, 1}, i.e. we only are interested in
encrypting single-bit messages (we will later show how any single-bit encryption scheme can
be used to derive an encryption scheme for poly-many bits). Given a trapdoor permutation
F = (Gentd), construct the following encryption scheme

1. Gen(1k):
(f, f−1)← Gentd(1

k)
Select a random r: r ← {0, 1}k

Output pk = (f, r) and sk = f−1

2. Epk(m) (where m ∈ {0, 1}):
pick x← {0, 1}k

Compute y = f(x)
Compute h′ = x · r
Output C = 〈y|h′ ⊕m〉

2-3

3. Dsk(y|b) (where |y| = k and |b| = 1):
Output (f−1(y) · r)⊕ b

Correctness Note that if y|b is a valid encryption of m then f−1(y) = x and b = (x·r)⊕m.
So the decryption algorithm will output (x · r)⊕ (x · r)⊕m = m.

Theorem 3 Assuming F is a trapdoor permutation, the encryption scheme presented above
is semantically secure.

Proof Assume toward a contradiction that the encryption scheme is not semantically
secure. Then there exists a ppt algorithm A such that

∣

∣

∣

∣

Pr[(pk, sk)← Gen(1k); b← {0, 1};C ← Epk(b); b
′ ← A(pk,C) : b = b′]−

1

2

∣

∣

∣

∣

(1)

is not negligible. For simplicity, we simply assume m0 = 0 and m1 = 1 (recall we are
working over a single-bit message space anyway, and the adversary cannot possibly succeed
with better than half probability if m0 = m1).

Let the one-way trapdoor permutation that we are using for the encryption scheme be
F = (Gentd). With this trapdoor permutation we construct F ′ = (Gen

′
td) with hard-core

bit H = {hk} as in Theorem 2; i.e., the hardcore bit for f ′(x|r) = f(x)|r is hk(x|r) = x · r .
We know that for any ppt adversary A′, the probability of guessing the hardcore bit x · r
given fk(x)|r is negligible; that is, the following is negligible for any ppt A′:

∣

∣

∣

∣

Pr

[

(f ′, f ′−1)← Gen
′
td(1

k);x← {0, 1}k ;
r ← {0, 1}k ; y = f(x)

: A′(f ′, y|r) = x · r

]

−
1

2

∣

∣

∣

∣

. (2)

Given A as above, our goal is to construct a ppt algorithm A′ contradicting the above
equation. We proceed as follows:

A′(f ′, y|r)
α← {0, 1}
Define pk = (f, r) and C = (y|α)
run A(pk,C)
if the output of A equals 0 then output α
else output the complement ᾱ

We may also rephrase the execution of A′ as follows: it runs A(pk,C) as above, and then
outputs α⊕A(pk,C) (this gives exactly the same output as above). Note also that A ′ runs
in probabilistic polynomial time, assuming A does.

Let us first examine the intuition behind this construction of A′. We have A(pk,C) =
A((f, r), (y|α)); thus, if A always correctly guessed which message was encrypted, then A
would always output (f−1(y) · r) ⊕ α, and hence A′ would always output f−1(y) · r. The
key thing to notice here is that f−1(y) · r is the hardcore bit hk(x|r) of f ′(x|r) (where we

let x
def
= f−1(y)). So, if A always succeeds (in “breaking” the encryption scheme) then A ′

always succeeds in guessing the hardcore bit. Of course, there is no reason to assume that
A always succeeds and a formal proof is needed.

2-4

To complete our proof we need to massage Eq. (2) into Eq. (1). We are interested in the
probability that A′ correctly predicts the hard-core bit (this is just Equation (2), replacing
f ′ by its definition in terms of f), i.e., we are interested in the following:

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ; y = f(x) : A′(f, y|r) = x · r]−

1

2

∣

∣

∣

∣

.

Re-writing the above in terms of how A′ was constructed, we obtain:

∣

∣

∣

∣

Pr[(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ; y = f(x) : A′(f, y|r) = x · r]−

1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x);α← {0, 1}
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

.

Next, we modify the experiment syntactically by choosing a bit b at random and setting
α = (x ·r)⊕b (I will omit the parentheses from now on). Note, however, that from the point
of view of A this is exactly equivalent to the above (because α is still uniformly distributed
over {0, 1}). Thus, we obtain (after some algebraic simplification):

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k ;

y = f(x);α← {0, 1}
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x); b← {0, 1};α = x · r ⊕ b
: A((f, r), (y|α)) ⊕ α = x · r

]

−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr

[

(f, f−1)← Gentd(1
k);x, r ← {0, 1}k;

y = f(x); b← {0, 1}
: A((f, r), (y|x · r ⊕ b)) = b

]

−
1

2

∣

∣

∣

∣

. (3)

Finally, let us look at the inputs given to A in the last expression above. The first input
(f, r) is exactly a public-key for the encryption scheme under consideration. Furthermore,
the second input y|x · r ⊕ b given to A (with x, y and r chosen at random) is exactly a
(random) encryption of the bit b with respect to the given public key. Thus, Equation (3)
is exactly equal to Equation (1) (and hence Equation (2) is equal to Equation (1)). But
we began by assuming that Equation (1) was non-negligible; this means that we have a
particular ppt adversary A′ for which Equation (2) is non-negligible. But this contradicts
the assumed security of the trapdoor permutation (i.e., Theorem 2).

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In Adv. in Cryptology — CRYPTO 1998.

[2] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, Proc. 21st
Ann. ACM Symp. on Theory of Computing, 1989, pp. 25–32.

[3] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System
Sciences, 28 (1984), pp. 270–299.

2-5

