
CMSC 858K — Advanced Topics in Cryptography April 13, 2004

Lecture 20

Lecturer: Bill Gasarch Scribe(s):
Rengarajan Aravamudhan
Julie Staub
Nan Wang

1 Last Lecture Summary

In lecture 18, we showed a technique that can be used to achieve k-database PIR with
communication complexity O

(

n1/(log k+log log k)
)

(we did not prove this bound in class, but
the method we showed yields this bound). Today, we show an improved approach due to
Ambainis [1] that achieves k-database PIR with O(n1/2k−1) communication complexity.

2 A 3-Database PIR Protocol with O(n1/5) Communication

We start by illustrating the technique for the case of 3 databases, using the notation as in
lecture 18 (in fact, this scheme builds on the previous schemes, and we assume the reader
is familiar with lecture 18). Here, we model the n-bit database as an n1/5 × n1/5 × n1/5 ×
n1/5 × n1/5 table {xi1,i2,i3,i4,i5}, with the desired bit indexed as (i∗1, i

∗

2, i
∗

3, i
∗

4, i
∗

5). The three
databases are DB1, DB2, and DB3. We first discuss the intuition, and then describe the
actual protocol.

As in the previous schemes we have seen, the user begins by choosing five random sets
S0

1 , S0
2 , S0

3 , S0
4 , S0

5 ⊆ {1, 2, ..., n1/5}, and computing S1
1 = S0

1 ⊕{i∗1}, . . . , S1
5 = S5⊕{i∗5}. The

user will send S0
1 , S0

2 , S0
3 , S0

4 , S0
5 to DB1 and DB2, and send S1

1 , S1
2 , S1

3 , S1
4 , S1

5 to DB3. Let

Xb1b2b3b4b5
def
=

⊕

i1∈S
b1

1

⊕

i2∈S
b2

2

⊕

i3∈S
b3

3

⊕

i4∈S
b4

4

⊕

i5∈S
b5

5

xi1,i2,i3,i4,i5 .

Recall (from the schemes we have seen in lecture 18) that the user would like to obtain all
32 of the values X00000, . . . , X11111, and then xor these together to recover the desired bit.
Now, DB1 (and DB2) can easily compute X00000, while DB3 can easily compute X11111.
Furthermore, since the user is already sending O(n1/5) communication to the databases
we may as well let the databases send this much communication back. We saw (in the
improved scheme from lecture 18) that this can help because we may then have, for ex-
ample, DB3 compute X11110 for all n1/5 possible values of S0

5 , and then send these n1/5

bits back to the user (who selects and uses the one he is interested in). Adopting this
approach, we see that DB3 can send back (enough information for the user to compute)
X11110, X11101, X11011, X10111, and X01111. Similarly, either of DB1 or DB2 can send back
(enough information for the user to compute) X00001, X00010, X00100, X01000, and X10000.
This can be all done while maintaining communication complexity O(n1/5).

Unfortunately, we are not yet done because the user will still be missing 20 of the values
he needs to recover the desired bit. Note that we cannot extend the above approach in

20-1



the trivial way to allow the user to recover the necessary values without exceeding O(n1/5)
communication complexity: if we have DB1 send back X11000 for all possible values of S1

1

and S1
2 , this will require DB1 to send n2/5 bits.

Instead, what we do is to apply a 2-database PIR protocol as a subroutine. Namely,
both DB1 and DB2 will compute each of the remaining values for all possibilities of each
of the unknown sets. (For example, DB1 and DB2 will compute X11100 for all possible
values of S1

1 , S1
2 , and S1

3 .) This results in each of these databases holding the same copy
of 20 strings, each of length at most n3/5. The key point is that the user only needs one
bit from each of these strings (i.e., the bit corresponding to the actual value of S 1

1 , . . . , S1
5)

and this bit is known by the user in step 1. Since DB1 and DB2 hold identical copies of
these strings, they and the user can use multiple invocations of a 2-database PIR protocol
with communication complexity O(N 1/3) (we saw such a scheme last time) to allow the
user to obtain the desired bits from each of these strings. Since N ≤ n3/5 in our case, this
will require communication complexity O(n1/5) meaning that the overall communication
complexity of the entire protocol remains O(n1/5).

Using this intuition, we obtain the following protocol:

1. The user begins by choosing five random sets S0
1 , S0

2 , S0
3 , S0

4 , S0
5 ⊆ {1, 2, ..., n1/5}, and

computing S1
1 = S0

1 ⊕ {i∗1}, . . . , S1
5 = S5 ⊕ {i∗5}. The user sends S0

1 , S0
2 , S0

3 , S0
4 , S0

5 to
DB1 and DB2, and sends S1

1 , S1
2 , S1

3 , S1
4 , S1

5 to DB3.

2. The user also sends to DB1 and DB2 20 queries for any 2-database PIR protocol with
O(n1/3) comm. complexity. These queries are determined based on the sets that the
user generated in the previous step.

3. DB1 and DB3 send back X00000 and X11111, respectively. Also, DB1 sends back
X00001, . . . , X10000 for all n1/5 possible values for each of S1

1 , . . . , S1
5 . Similarly, DB3

sends X11110, . . . , X01111 for all n1/5 possible values for each of S0
1 , . . . , S0

5 .

4. (We use X11100 as an example, but exactly the same computation is carried out for each
of the remaining values.) DB1 and DB2 both generate X11100 for all n3/5 possibilities
of S1

1 , S1
2 , S1

3 . This results in each of these databases holding identical copies of a
string of length n3/5. Using the appropriate query that was sent by the user, each
database computes a response using the underlying 2-database PIR protocol.

5. The user obtains X00000 and X11111 immediately, and can easily select the values for
X00001, . . . , X10000 and X11110, . . . , X01111 from the data sent back by the databases.
For the remaining values, the user runs the underlying PIR protocol using the appro-
priate replies sent back by DB1 and DB2 to recover all remaining values. The desired
bit of the original data is recovered as:

1
⊕

b1=0

1
⊕

b2=0

1
⊕

b3=0

1
⊕

b4=0

1
⊕

b5=0

Xb1b2b3b4b5 .

3 Extending the Scheme for k Databases

We generalize the scheme of the previous section and prove the following theorem:

20-2



Theorem 1 For all k ≥ 2, there exists a k-database PIR scheme with O(n1/2k−1) commu-
nication complexity.

Proof We will prove this by induction. For k = 2, 3, we have already shown that the
theorem holds. So, assume the theorem is true for k−1, and there exists a (k−1)-database
PIR scheme with O(n1/2k−3) communication complexity. We show how to construct a
k-database scheme as claimed by the theorem.

We view the n-bit database as an n1/2k−1 × n1/2k−1 × · · · × n1/2k−1 array with the
desired bit indexed as (i∗1, i

∗

2, . . . , i
∗

2k−1). We use the notation from the previous section.
The protocol is defined as follows:

1. The user chooses 2k−1 random sets S0
1 , . . . , S0

2k−1 ⊆ {1, . . . , n1/(2k−1)}, and computes
S1

` = S0
` ⊕ {i∗`}. The user sends S0

1 , . . . , S0
2k−1 to each of DB1, . . . , DBk−1 and sends

S1
1 , . . . , S1

2k−1 to DBk.

2. DB1 will compute and send X02k−1 as well as the n1/(2k−1) possibilities for each
of {X0i102k−2−i}2k−2

i=0 . Similarly, DBk will compute and send X12k−1 as well as the
n1/(2k−1) possibilities for each of {X1i012k−2−i}2k−2

i=0 .

3. In addition, each of the databases DB1, . . . , DBk−1 will compute all possible values
for Xw for all (2k−1)-bit strings w having at least 2 and at most 2k−3 ones. Instead
of sending these directly to the user, the databases will execute the (k − 1)-database
PIR protocol (that exists by assumption) on these strings, using queries sent by the
user in the first stage.

The total communication complexity can be computed as follows:

• Sending the sets from the user to all k databases requires k · (2k − 1) · n1/(2k−1) bits.

• Steps 2 and 3 each require only (2k − 2) · n1/(2k−1) bits to be sent by databases DB1

and DBk.

• Step 4 involves running a (k − 1)-database PIR protocol on fewer than 22k−1 strings,
each of length at most n(2k−3)/(2k−1). Since the underlying PIR protocol has commu-
nication complexity O(N 1/(2k−3)), this requires total communication (including the
communication from the user in the first round) O(n1/(2k−1)).

The total communication complexity is therefore O(n1/(2k−1)), as desired.

When including the dependence on k, the communication complexity is O(2k2

n1/(2k−1)).
This is quite high even for moderate values of k! However, k-database PIR schemes with
communication complexity O(k3n1/2k−1) and O(n(log log k)/(k log k)) (ignoring the constant
which depends on k) are known. See http://www.cs.umd.edu/~gasarch/pir.

References

[1] A. Ambainis. Upper Bound on the Communication Complexity of Private Information
Retrieval. ICALP, 1997.

20-3


