
CMSC 858K — Advanced Topics in Cryptography April 22, 2004

Lecture 23

Lecturer: Jonathan Katz Scribe(s):
Nicholas Sze
Ji Sun Shin
Kavitha Swaminathan

1 Introduction

We showed previously a zero-knowledge proof system for 3-colorability. Unfortunately,
to achieve negligible soundness error while maintaining zero knowledge it was required to
repeat the basic, 3-round protocol sequentially polynomially-many times (giving a protocol
with polynomial round complexity). Here, we show a constant-round zero-knowledge proof
system for NP . We will also discuss the notion of proofs of knowledge and show a (non-
constant-round) zero-knowledge proof of knowledge for languages in NP .

1.1 A Brief Review

At a very high level, we review why our previous techniques did not suffice to give a constant-
round zero-knowledge proof system (refer to previous lectures for more details). Recall the
basic, 3-round protocol for 3-colorability: the prover sends commitments to the colorings of
the vertices in the graph; the verifier sends a “challenge” (i, j) (where this is an edge in the
graph); and the prover responds by “opening” the commitments to the colors for vertices i
and j. The verifier accepts only if these colors are different.

In proving the zero-knowledge property of this basic protocol, we relied on the fact
that a simulator could “guess” the verifier’s challenge (i, j) in advance with noticeable (i.e.,
inverse polynomial) probability. So, having the simulator “rewind” polynomially-many
times would be sufficient to allow the simulator to “guess correctly” at least once. But this
very property also allows a cheating prover to guess the verifier’s challenge in advance with
noticeable probability, meaning that the soundness will not be negligible.

We can decrease the soundness error by repeating the basic protocol many times. But
if we schedule to repetitions in parallel, the simulator has only negligible probability of
guessing all the verifier’s queries (simultaneously) in advance. On the other hand, if we
schedule the repetitions sequentially then the simulator can guess each challenge (one-by-
one) with noticeable probability.1

2 A Constant-Round Zero-Knowledge Proof for NP

Goldreich and Kahan [3] suggested the first constant-round ZK proof system for NP. The
intuition behind their scheme is to force the verifier to commit to its challenges in advance.
Then, once the simulator has learned the verifier’s challenges, it can rewind and commit to
a set of colorings that will allow it to answer the challenges correctly.

1Note that the simulator has more power than a cheating prover since it can rewind the verifier.

23-1

We now describe the protocol in detail:

Initialization The prover and verifier each have a graph G. The prover also knows a 3-
coloring of this graph. Let the common security parameter be k (this might be the
number of vertices in G, but it could also be independent of G).

First stage The verifier chooses k edges (i1, j1), . . . , (ik, jk) uniformly at random from (the
edge set of) G. It then commits to these edges using a perfect commitment scheme, and
sends these commitments to the prover. We saw in the last lecture that there are two-
round protocols for perfect commitment based on some number-theoretic assumptions,
so for convenience we will assume that the first stage is carried out in rounds 1 and 2.

Rounds 3–5 The prover and verifier now execute k parallel executions of the basic, 3-
round protocol for graph 3-colorability. Sketching this in a bit more detail (but still
assuming the reader is familiar with the basic protocol from a previous lecture):

Round 3 The prover commits to k different colorings of G using independent ran-
domness for each of these k iterations, and where the colors in each iteration
are committed to vertex-by-vertex (as usual). It is stressed that independent
randomness is used in each of the k iterations, so in particular each of the k
colorings is a random permutation of the coloring the prover started with.

Round 4 The verifier decommits the challenges that it committed to in the first
stage. This results in a sequence of k edges (and the corresponding decommit-
ments) that are sent to the prover.

Round 5 The prover first checks to make sure that the verifier opened his com-
mitments correctly. If not, then the verifier is cheating so the prover aborts.
Otherwise, the prover responds to the challenges as usual: in iteration `, if the
challenge is (i`, j`) then the prover reveals the colors of vertices i and j in the
`th iteration.

Acceptance The verifier accepts only if all k iterations were successfully completed.

Note that the verifier uses a perfect commitment scheme to commit to its challenges
in the first phase, while the prover uses a standard commitment scheme to commit to
the colorings in round 3. The is necessary because a proof system requires soundness to
hold against an all-powerful (cheating) prover. If the verifier used a standard commitment
scheme, then an all-powerful prover would be able to figure out the verifier’s challenges
before round 3, and could then fool the verifier into accepting even if G were not a 3-
colorable graph. Similarly, if the prover’s commitments were not information-theoretically
binding then it would be able to “change” its answers depending on the challenges of the
verifier.

Given the above discussion, it is easy to see that the above scheme satisfies correctness
and has negligible soundness error even for an all-powerful prover. The difficult part is to
show that the protocol is zero knowledge. In fact, a full proof is quite involved and we will
not give one here (see [3]). Instead, we will only give some of the intuition for the proof by
considering the case of a verifier who always opens the commitments correctly in round 4.
Also, we will be relatively informal here (since we are not giving a complete proof anyway)

23-2

but the interested reader will be able to derive a proof for this restricted case from the proof
given earlier for the basic, 3-round protocol.

A simulator for the type of verifier considered here proceeds as follows:

1. For the first phase, the simulator runs the perfect commitment scheme normally and
obtains a sequence of commitments from the verifier.

2. Simulating round 3, the simulator sends k “garbage” commitments to colorings of G.
Namely: for each of k iterations, commit to “red” for each vertex of the graph. (The
simulator must commit to “garbage” because it does not know a coloring. But by
indistinguishability of the commitments, a poly-timer verifier can’t distinguish these
“garbage” commitments from commitments that would be sent by a real prover.)

3. The verifier then decommits to the challenges that it committed to in the first stage.
(Recall we assume that the verifier always decommits properly.) Denote these chal-
lenges by (i1, j1), . . . , (ik, jk).

4. Now, the simulator “rewinds” the verifier and sends k commitments to colorings of G
for which it can answer the challenges of the verifier. That is: for the `th iteration, the
simulator chooses random, distinct colors for vertices i` and j`, commits to these colors
for i` and j`, and commits to “red” for all other vertices (in that iteration). Denote
these commitments by com1, . . . , comk (each com` is composed of commitments for
each vertex of G).

5. The verifier again decommits to the challenges that it committed to in the first stage.
Although we assume that the verifier always decommits properly, we do not necessarily
assume that the decommitted values now are the same as they were before! However,
they do in fact have to be the same with all but negligible probability ; this follows from
the (computational) binding of the commitment scheme used in the first phase.

6. Assuming the commitments were again opened in the same way, the simulator can
easily decommit the relevant vertices correctly.

7. The final “view” output by the simulator includes the verifier’s random coins, the
messages sent to the verifier during the first stage, the second sequence of commitments
com1, . . . , comk, and the decommitments for the appropriate vertices.

Informally, the simulated transcript is indistinguishable from a real transcript because
of the hiding property of the commitment scheme used by the prover in the 3rd round. For
a careful proof in the general case and much more discussion and details, see [3].

3 Proofs of Knowledge

Proofs of knowledge may be viewed as formalizing an even stronger notion of soundness.
Very informally, a proof system may be viewed as demonstrating that a particular statement
is true; a proof of knowledge may be viewed as demonstrating that the prover “knows” why
the statement is true. Although it is fair to say that the notion of a proof of knowledge
was introduced for (very important) technical reasons, there are some practical examples of

23-3

why proofs of knowledge are necessary. As an example of the latter, let G be a finite cyclic
group of order q in which the discrete logarithm assumption is believed to hold, and let g
be a generator of G. Consider the language LG = {h | ∃x ∈

�
q s.t. gx = h}. On the one

hand, LG is just G itself since for every element h ∈ G we know that g logg h = h. So a proof
that h ∈ LG is trivial (assuming that deciding membership in G is trivial). On the other
hand, a proof of knowledge that h ∈ LG implies that the prover “knows” the value of logg h,
something that is not implies by a proof alone. Similarly, if f is a one-way permutation and
we define Lf = {y | ∃x s.t. f(x) = y}, then a proof for Lf is trivial (since Lf contains all
strings) but a proof of knowledge that y ∈ Lf is not (as it implies that the prover “knows”
f−1(y)).

Of course, this leaves us with a vague sense of discomfort: what does it mean for
a machine to “know” something? We define this in terms of the ability to extract the
knowledge from the machine: i.e., a machine M “knows” something if there is a poly-time
process by which we can extract this knowledge from M . We do not give a formal definition
here (see [2] or [1] instead), but give the following informal definitions instead:

Definition 1 A relation R is a set of pairs of strings. A relation is said to be “polynomial-
time” if: (1) there exists a polynomial p(·) such that (x, y) ∈ R implies |y| ≤ p(|x|), and
(2) given a pair (x, y), one can decide in polynomial time (in |x|) whether (x, y) ∈ R. ♦

Any relation R defines a language LR
def
= {x | ∃y s.t. (x, y) ∈ R}. Furthermore, if R

is polynomial time, then LR ∈ NP . Finally, any language L ∈ NP defines a relation

RL
def
= {(x, y) | x ∈ L ∧ y is a witness for x}.

Definition 2 Let R be a polynomial-time relation, and LR be as above. A proof system
(P,V) for LR is a proof of knowledge for LR with soundness error ε(k) if the following
holds for all x and all cheating provers P∗: Let succP∗(k) = Pr[〈P∗,V〉(1k, x) = 1]. If
succP∗(k) > ε(k) then with probability negligibly close to succP∗(k) one can extract a value
y from P∗ in polynomial time2 such that (x, y) ∈ R. A proof of knowledge for LR is one
having negligible soundness error. ♦

This definition will hopefully become more clear after we show an example in the following
section.

Note that the zero-knowledge (ZK) requirement is orthogonal to the proof of knowledge
(PoK) requirement. The former protects the prover from a malicious verifier, while the latter
protects (in some sense) a verifier from a malicious prover. On the other hand, without any
additional requirements it is trivial to construct a PoK for any polynomial-time relation: on
common input x, the prover simply sends y such that (x, y) ∈ R. So, we will be interested
in witness indistinguishable PoKs (WI-PoKs) or ZK-PoKs.

3.1 A Proof of Knowledge for Hamiltonian Cycle

Here, we show a basic 3-round ZK PoK (with non-negligible soundness error) for the lan-
guage HAM of Hamiltonian cycles (this is the set of graphs containing a Hamiltonian

2Paralleling the case of zero-knowledge, extraction in expected polynomial-time are often allowed.

23-4

cycle — i.e., a cycle that includes each vertex of the graph exactly once). This language is
NP-complete, so this gives3 a PoK for all of NP .

The protocol proceeds as follows:

P(G,Ham-cycle) V(G)

pick a random permutation
Π of the graph G;
commit to the adjacency
matrix of Π(G) �

��� com11 · · · com1n

...
. . .

...
comn1 · · · comnn

����
�

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−− c← {0, 1}
if c = 0, open all commit-
ments and send Π
if c = 1, open commit-
ments on the Hamiltonian
cycle

open according to c value
−−−−−−−−−−−−−−−→

verify commitments
if c = 0 check that the ma-
trix is equal to Π(G)
if c = 1 check that a cycle
was revealed

Claim 1 This is a proof of knowledge with soundness error 1/2.

Proof Note that for any cheating prover and any graph G, this prover either succeeds with
probability 0, probability 1/2, or probability 1. All we need to prove (cf. the definition of
proofs of knowledge) is that if P∗ succeeds with probability 1, then we can extract from P ∗

a Hamiltonian cycle in G with probability negligible close to 1 (in fact, we will extract with
probability 1). Succeeding with probability 1 simply means that it answers both possible
challenges correctly.

Given such a G and P∗ who convinces the verifier with probability 1, we simply let the
prover send its initial message; send challenge “0” and get the response; then rewind the
prover and send challenge “1” and get the response. By assumption, both responses of P ∗

would cause the honest verifier to accept. So, from the c = 0 response, we have a graph
G′ (that P∗ committed to in the first round) and a permutation Π such that Π(G) = G ′.
From the c = 1 response, we have a Hamiltonian cycle in G ′. It is now easy to recover a
Hamiltonian cycle in the original graph G.

3There are some additional subtleties here: we need it to be the case that for any L ∈ NP there exist
poly-time computable functions f1, f2 such that: x ∈ L ⇔ f1(x) ∈ HAM and also (f1(x), y) ∈ RHAM ⇔

(x, f2(y)) ∈ RL.

23-5

The proof system is also zero knowledge. A simulator Sim can be constructed as follows:

Sim(G)

Repeat k times:
1 Guess c′ ← {0, 1}
2a If c′ = 0, commit to a random permutation Π of G
2b If c′ = 1, commit to a random cycle graph
3 Send the commitments to the verifier, who responds with c
4 If c = c′, output a transcript including the correct response

We do not prove that this simulator “works”, but leave this as an exercise for the reader.
As usual, by repeating the protocol multiple times we can decrease the soundness error.

We know that by repeating the protocol sequentially we retain the zero-knowledge property
(at the expense of high round complexity); what about the proof of knowledge property?

Claim 2 Running the above protocol k times sequentially results in a proof of knowledge
with soundness error 1/2k.

Proof (Sketch) Assume a graph G and a prover P∗ who convinces V with probability
strictly greater than 1/2k. We can view the execution of P∗ with V as a binary tree of
height k, where the root corresponds to the beginning of the protocol and a node at level
i (with the root at level 0) has two children corresponding to the two possible challenges
that can be sent at round i + 1. Call a leaf of the tree accepting only if the prover answers
correctly to all challenges on the path from the root to this leaf. Since P ∗ convinces V with
probability strictly greater than 1/2k, there are at least two accepting leaves. Intuitively,
the paths from these two leaves to the root must have at least one node in common; at this
node, P∗ answers correctly for both possible challenges, and we can then extract as in the
previous claim. We now show how to do this efficiently:

for i = 1, · · · , n
run P∗ for round i
by rewinding, send both c = 0 and c = 1
if P∗ answers correctly both times then extract a witness (as before)
otherwise, increment i and continue along the path for which P ∗ answered correctly

(In the last step, there must be a value of the challenge for which P ∗ answers correctly since
otherwise P∗ convinces the verifier with probability 0.) Eventually, the above algorithm
finds a node where two paths from the root to accepting nodes diverge (drawing a picture
and following the execution of the above algorithm should convince you of this).

If we want to construct a protocol with better round complexity, we can do so by
running the basic, 3-round protocol in parallel. We know that this will not preserve the
zero-knowledge property, but it will preserve the (weaker) property of witness indistin-
guishability. What about the proof of knowledge property?

Claim 3 Running the basic protocol k times in parallel results in a proof of knowledge with
soundness error 1/2k. (However, here extraction requires expected polynomial time.)

23-6

Proof Note that we have a 3-round protocol where the prover begins by sending a vector
of k commitments (to adjacency matrices); the verifier sends a k-bit challenge vector; and
the prover then responds to each of the k 1-bit challenges individually, as in the basic
protocol. If we can find two different vectors ~c,~c ∗ for which the prover responds correctly,
then we can extract a witness as before: simply find an index i where ci 6= c∗i (such an index
must exist since ~c 6= ~c∗) and then extract using the ith adjacency matrix sent by the prover
in the first round and the ith response given by the prover in the last round.

Assume, then, that we have a G and a prover P∗. Consider the following algorithm to
extract a witness:

P∗ sends its vector of commitments
~c← {0, 1}k

run P∗ using challenge ~c
if P∗ fails to respond correctly, halt
otherwise:
for i = 0 to 2k − 1:
~c∗ ← {0, 1}k

run P∗ using challenge ~c∗

if P∗ responds correctly and ~c 6= ~c∗, extract a witness and halt
run P∗ using challenge 〈i〉
if P∗ responds correctly and ~c 6= 〈i〉, extract a witness and halt

(In the above, 〈i〉 represents a standard k-bit binary encoding of the number i.)
Let ε(k) denote the probability that P∗ answers correctly. We need to show two things:

(1) if ε(k) > 1/2k, then we extract a witness with (negligibly close to) the same probability;
(2) the algorithm above runs in expected polynomial time regardless of ε.

If ε > 1/2k then there are at least 2 difference challenges for which P ∗ answers correctly.
The algorithm above enters the loop with probability exactly ε; once it enters the loop, it is
guaranteed to eventually find a second, different challenge for which P ∗ answers correctly.
Since it extracts a witness in this case, we have that it extracts a witness overall with
probability exactly ε. (Actually, we have ignored the negligible probability with which P ∗

might be able to break the binding property of the commitment scheme. But the basic
argument remains the same or we can use a commitment scheme with perfect binding.)

We also need to also argue that extraction runs in expected polynomial time (in k); this
seems worrisome since the inner loop potentially counts up to 2k−1. Consider the following
cases: if ε = 0 then clearly the algorithm runs in polynomial time (since it never enters the
loop). If ε = 2−k then we enter the loop with probability ε and then run 2k − 1 iterations
of the inner loop. So the expected number of loop iterations is:

2−k(2k − 1) + (1− 2−k) · 0 < 1,

and the algorithm runs in expected polynomial time (we do not extract a witness in this
case, but that is ok). Finally, if ε > 2−k then consider what happens if P∗ answers correctly
in the initial stage for a vector ~c. In this case, the probability of choosing ~c∗ 6= ~c for which
P∗ answers correctly is exactly 2kε−1

2k ≥ ε/2. So the expected number of loop iterations
until such a ~c∗ is found is at most 2/ε. Since the probability of entering the loop in the first

23-7

place is ε, the expected number of loop iterations overall is:

ε ·
2

ε
+ (1− ε) · 0 < 2,

and the algorithm runs in expected polynomial time.

References

[1] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Crypto ’92.

[2] O.Goldreich. Foundations of Cryptography, vol 1: Basic Tools. Cambridge University
Press, 2001.

[3] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 1996.

23-8

