
CMSC 858K — Advanced Topics in Cryptography April 27, 2004

Lecture 24

Lecturer: Jonathan Katz Scribe(s): A. Anand, G. Taban, M. Cho

1 Introduction and Review

In the previous classes, we have discussed proofs of knowledge (PoKs) and zero-knowledge (ZK)
proofs. We briefly review these notions here:

ZK proofs. Zero-knowledge proofs involve a prover P trying to prove a statement to a verifier V
without revealing any knowledge beyond the fact that the statement is true. For example, consider
the problem of proving membership in an NP language L, (e.g., graph Hamiltonicity, 3-coloring,
etc.). A ZK proof protects against a cheating prover, in the sense that if a prover tries to give a
proof for an x 6∈ L the verifier will reject the proof with all but negligible probability. Further, a ZK
proof protects against a cheating verifier, in the sense that it ensures that the verifier (informally)
does not learn anything from a proof that x ∈ L other than the fact that x ∈ L.

A ZK proof system requires the existence of a simulator who can simulate a transcript of the
protocol execution without knowing the witness to the statement. As we have seen, a simulator typ-
ically does this by rewinding the verifier to a prior state and then trying to continue the simulation
until it comes up with a valid transcript.

Proofs of knowledge. Proofs of knowledge are protocols in which the prover actually proves that
he “knows” a witness. In addition to the formal sense in which this holds (i.e., via the additional
requirement that there exists a knowledge extractor who can extract a valid witness from any prover
who succeeds in giving a correct proof with high-enough probability), there are also examples where
membership is “easy” to determine but proving knowledge of a witness might be hard. The classic
example is the case of a cyclic group G with generator g in which the discrete logarithm is hard.
Here, for a given h ∈ G it might be easy to determine that, in fact, h is an element of G and
therefore there exists an x such that gx = h; however, we may additionally want a prover to prove
that he knows this x.

Thinking about it a bit, the ZK property and the PoK property seem to be at odds: a ZK proof
requires a simulator who (typically) rewinds a cheating verifier to simulate a proof without knowing
a witness, while a PoK requires a knowledge extractor who (typically) rewinds a cheating prover
to extract a witness. And indeed, we will see in what follows that the approach to constructing a
constant-round ZK proof from the previous lecture (namely, forcing the verifier to commit to its
challenges in advance) seemingly destroys the PoK property. To obtain a constant-round protocol
which is both zero-knowledge and admits a knowledge extractor we will consider a relaxation of
proofs called arguments in which the soundness condition is only required to hold only with respect
to polynomial-time cheating provers (recall that proofs require the soundness condition to hold even
for all-powerful provers).1

1In fact, constant-round zero-knowledge proofs of knowledge for all of NP are possible, but we will not see an
example in this course.

24-1



2 Review: A ZK PoK Protocol

In this section, we review a ZK PoK protocol for graph Hamiltonicity from the previous lecture;
see Figure 1. In the figure, G is a graph and C represents a Hamilton cycle in G. In the previous
lecture, we showed that this protocol is zero-knowledge and a proof of knowledge with soundness
error 1/2. We now informally recall the proofs of these properties:

• To prove the zero-knowledge property, we considered the following simulator: it guesses in
advance a bit c̃. If c̃ = 0, it commits to a (random permutation of) the adjacency matrix
for G; if c̃ = 1, it commits to a (randomly-permuted) cycle graph. It sends the resulting
commitment to the verifier who responds with a challenge c. If c̃ = c then the prover responds
in the natural way and is done. Otherwise, the simulator rewinds and tries again. Since c̃ = c
with probability 1/2 each time, if the simulator rewinds k times it will succeed at least once
with all but negligible probability. (The rest of the proof is then devoted to showing that the
simulation is computationally indistinguishable from a real execution.)

• To show the knowledge extraction property, assume we have a prover who gives a correct
proof with probability better than 1/2. This implies that the prover responds correctly for
both possible values of c. So we simply rewind the prover, send him both possible challenges,
and use the two (correct) responses to compute a Hamiltonian cycle in G.

Steps P(G,C) V(G)

1
commit(Π(G))

−−−−−−−−−−−−−−−→

2
c∈{0,1}

←−−−−−−−−−−−−−−−

3

if c = 0 : send decommit(AdjMatrix(G)) and Π

else : send decommit(cycle(G))
−−−−−−−−−−−−−−−→

Figure 1: A ZK-PoK protocol.

We also noted that we could run the above protocol k times sequentially to reduce the soundness
error to 2−k. Doing so maintains the ZK property of the construction, and we showed that the
resulting protocol was also a PoK with the claimed soundness error.

2.1 A Parallel Execution of the Protocol

What happens if we run the original protocol k times in parallel? The PoK property remains intact:

Claim 1 Running the above protocol k times in parallel results in a PoK with soundness error 2−k.

Proof To prove the above claim, we consider a knowledge extractor E which works as follows.

• Obtain a first message from the prover P .

• Pick a random challenge c1 ∈ {0, 1}
k , and send this challenge to the prover. If the prover

does not answer correctly, stop.

24-2



• Otherwise, repeatedly choose a random c2 ∈ {0, 1}
k, rewind the prover, and send c2 to the

prover until the prover answers correctly a second time and c2 6= c1. In parallel, perform
an exhaustive search for a Hamiltonian cycle in G and stop once one is found or when it is
determined that no such cycle exists.

We now show two facts: (1) E runs in expected polynomial time (this assumes that P runs in
expected polynomial time), and (2) if the probability p that P gives a successful proof is greater
than 2−k then E succeeds in computing a Hamiltonian cycle in G with probability p.

To prove the first statement, note that when p = 0 then E clearly runs in (strict) polynomial
time. So consider the case that p > 2−k. Let n > 1 be the number of challenges for which P answers
correctly (i.e., p = n

2k ). When P does not respond correctly to the first challenge c1 (with happens
with probability 1− p), then E runs in (strict) polynomial time. When P responds correctly to c1,
then the expected number of times E rewinds P until it finds a second (different) c2 for which P
answers correctly is (n−1

2k )−1. Overall, then, the expected running time of E is given by:

(1− p) · poly(k) +
n

2k
·

2k

n− 1
· poly(k) = poly(k)

(we use poly(k) here to refer to an arbitrary polynomial). The last case remaining is when p = 2−k

(i.e., P responds correctly to exactly one challenge). As before, when P does not respond correctly
to c1 then E runs in strict polynomial time. When P responds correctly to c1, then E will never
find a c2 6= c1 for which P answers correctly again. But, P is also running an exhaustive search for
a Hamiltonian cycle in G and we assume this takes at most 2k · poly(k) steps.2 So, the expected
running time of E is given by:

(1− 2−k) · poly(k) = 2−k · 2k · poly(k) = poly(k).

We now move on to a proof of the second statement. Note that P responds correctly to
challenge c1 with probability exactly p. We claim that as long as p > 2−k, then E always computes
a Hamiltonian cycle whenever P responds correctly to c1. To see this, note first that p > 2−k

implies that G has a Hamiltonian cycle. (We assume here that the commitments sent in the first
round are perfectly binding.) When P responds correctly to c1, then E stops its execution when
either (1) it finds a c2 6= c2 for which P also responds correctly, or (2) it completes its exhaustive
search for a cycle. In either of these cases, E can then compute the desired Hamiltonian cycle.

Unfortunately, k-fold parallel repetition of the protocol seems to destroy the zero-knowledge
property. At a minimum, the type of simulator we considered before does not work, and no
simulator is known which would prove the ZK property. In particular, if we consider the simulation
strategy as before then we would have a simulator who tries to guess c̃ = c in advance: but now
c ∈ {0, 1}k and so the probability of guessing correctly is negligible! (And so even repeatedly
guessing polynomially-many times will not help.)

2.2 Further Modifications?

We can try to recover the ZK property (for the protocol obtained via k-fold parallel repetition
of the original, 3-round protocol) by using the Goldreich-Kahan technique, in which the verifier
is forced to commit (using a perfectly-hiding commitment scheme) to their challenge vector c in

2If one is unhappy with this assumption, note that exhaustive search takes at most k! · poly(k) time and so by
running the protocol log k! = O(k log k) times in parallel the proof goes through.

24-3



advance. For future reference, let us call the round in which the verifier commits to c “round 0”.
This modification will indeed result in a zero-knowledge protocol. . . but the modified protocol no
longer appears to be a proof of knowledge! Indeed, the very fact that the verifier is forced to commit
in advance to c means that the knowledge extraction strategy outlined earlier will no longer work:
even E cannot break the commitment scheme, and so it cannot decommit to c2 6= c1 unless it
rewinds all the way back to round 0 and sends a new set of commitments, in which case P might
change its round-1 message!

Somewhat paradoxically(?), it is possible to design a constant-round ZK-PoK. Instead of show-
ing this, however, we consider a relaxation of the notion of a “proof” and show how to achieve both
knowledge extraction and zero-knowledge subject to this relaxation.

3 Zero-Knowledge Arguments of Knowledge

As discussed in the introduction, an argument requires soundness to hold only for provers running
in polynomial time (whereas a proof requires soundness to hold even for all-powerful provers). (An
argument of knowledge is defined similarly, such that a knowledge extractor is only required to
extract a witness from provers running in polynomial time.) We will now show a construction of
a constant-round zero-knowledge argument of knowledge due to Feige and Shamir. Our discussion
will be somewhat informal and “high-level”; the reader is referred to [2, 1] for further details.

Let f be a one-way function. The basic protocol proceeds in 6 rounds (it is possible to “collapse”
this to a 4-round protocol, but the proof is less intuitive in this case so we do not present this
extension). Let L be an NP language; we describe the protocol assuming the honest prover is
proving that x ∈ L given some witness w.

Rounds 1–3: The verifier chooses x1, x2 at random, computes y1 = f(x1) and y2 = f(x2), and
sends y1, y2 to the prover. The verifier then gives a 3-round witness-indistinguishable (WI)
proof of knowledge (with negligible soundness error) of “f−1(y1) or f−1(y2)”. Note that the
verifier can do this efficiently, since it knows witnesses x1, x2 (in fact, only one witness is
needed). We comment briefly below on the existence of 3-round WI proofs of knowledge.

Rounds 4–6: If the proof given by the verifier fails, the prover simply aborts. Otherwise, the
prover gives a 3-round witness-indistinguishable proof of knowledge of “f−1(y1) or f−1(y2)
or x ∈ L”. Note that the prover can do this efficiently since it has a witness that x ∈ L.

In the previous lecture we have already shown a 3-round WI proof of knowledge with negligible
soundness error: the k-fold parallel repetition of the basic, 3-round protocol (with soundness error
1/2). We proved explicitly last time that this protocol is a proof of knowledge with negligible
soundness error. The fact that it is witness indistinguishable follows from the facts that: (1) as
proved last time, the basic 3-round protocol is zero-knowledge; (2) zero-knowledge implies witness
indistinguishability, and hence the basic, 3-round protocol is witness indistinguishable; finally (3) we
saw in an earlier lecture that witness indistinguishability is preserved under parallel repetition.

We now discuss, informally, why this protocol is both zero-knowledge and an argument of
knowledge. (Note that it is certainly not a proof, since an all-powerful prover can invert f and then
give a successful proof even when x 6∈ L.)

Zero-knowledge. We show a simulator demonstrating that the protocol is zero knowledge (al-
though no formal proof will be given). The simulator, on input x ∈ L but without a witness,
proceeds as follows:

24-4



Rounds 1–3: Interact with the (possibly cheating verifier) V ∗ to obtain values y1, y2 and a tran-
script T of the first three rounds. If V ∗ does not successfully complete its proof of knowledge,
then the simulator can abort (just like the real prover would) and the simulation is done by
simply outputting T . Otherwise, if V ∗ does give a successful proof of knowledge, the simula-
tor runs the knowledge extractor for this 3-round proof to obtain a witness for “f −1(y1) or
f−1(y2)”. (If this extraction fails, then the entire simulation is aborted.) Note that, assuming
a witness is extracted, this gives an x such that either f(x) = y1 or f(x) = y2.

Rounds 4–6: Continuing in an execution with V ∗ with initial transcript T , the simulator now
simply gives a WI proof of knowledge of “f−1(y1) or f−1(y2) or x ∈ L”. The key point is that
the simulator can do this without any further rewinding since it does indeed know a witness
for this statement.

A proof that this results in a simulation which is computationally-indistinguishable from a real
execution is relatively straightforward given all the machinery at our disposal. The initial portion
of the transcript (i.e., the transcript T of the first 3 rounds) is identically distributed to the first 3
rounds in a real execution of the protocol. If V ∗ gives a successful proof in rounds 1–3, knowledge
extraction will succeed with all but negligible probability. Assuming this to be the case, then the
last 3 rounds in the simulation consist of a WI proof using the witness x extracted in the previous
phase; in a real execution, these last 3 rounds would be a WI proof using a witness for x ∈ L
(the same statement is being proved in either case). But witness indistinguishability of the proof
system used in rounds 4–6 implies that these two resulting transcripts are indeed computationally
indistinguishable.

Argument of knowledge. We next argue that the protocol is an argument of knowledge, which
will imply soundness (for poly-time provers). The knowledge extractor E is the obvious one: simply
run the knowledge extractor for the WI proof of knowledge given by the prover in rounds 4–6. The
analysis of E is the tricky part. A proof that E extracts a witness for x ∈ L follows from two claims
along the following lines:

Claim 2 (Informal) E extracts a witness for the statement “f−1(y1) or “f−1(y2) or x ∈ L” with
sufficiently-high probability (“sufficiently-high probability” here simply refers to the probability re-
quired by the definition of an argument/proof of knowledge).

This claim follows immediately from the fact that the proof given in rounds 4–6 is a proof of
knowledge. Next:

Claim 3 E extracts a witness for “f−1(y1) of f−1(y2)” with only negligible probability.

Thus, whenever E extracts a witness for “f−1(y1) or “f−1(y2) or x ∈ L” (which is does sufficiently-
often, by the previous claim) it in fact extracts a witness, as desired, for x ∈ L except with negligible
probability.

The proof of the above claim is more difficult, and proceeds in the following steps:

1. Say the probability of extracting a witness for “f−1(y1) of f−1(y2)” is p. Let pb denote the
probability of extracting a witness for f−1(yb). Clearly, either p1 ≥ p/2 or p2 ≥ p/2; assume
the former without loss of generality.

2. The above refers to the probability of extraction when, in rounds 1–3, the verifier (i.e., the
knowledge extractor playing the role of the verifier) gives a WI proof using witnesses for both

24-5



f−1(y1) and f−1(y2). In fact, it is enough to use only a witness for f−1(y2) when giving
this proof. Witness indistinguishability of the proof system in rounds 1–3 can be used to
show that the probability of extracting a witness for f−1(x1) is not affected by more than a
negligible amount, and so the probability of extracting a witness for f−1(x1) in this case is
negligibly close to p1 ≥ p/2.

3. We show that if p1 is non-negligible then we can use the cheating prover to invert the one-way
function f as follows: Given a point y1, choose a random x2, compute y2 = f(x2), and then
run the above experiment (giving the appropriate WI proof in rounds 1–3 and then extracting
in rounds 4–6). By what we have said above, the probability that we extract a witness for
f−1(y1) is negligibly-close to p1. But extracting a witness for f−1(y1) exactly means that we
have computed f−1(y1)! Since this cannot occur with more than negligible probability, we
conclude that p1 (and hence p) is negligible.

We remark that the use of two values y1, y2 in the argument system is essential to the above
proof. If we had used only a single value y1, then in order to reach the extraction phase (i.e.,
rounds 4–5) we would need to successfully complete the proof in rounds 1–3. . . but since this is not
a ZK proof we actually need a witness to do so. But if we have the witness f−1(y1) in rounds
1–3, then extracting this witness in rounds 4–6 is not a contradiction! The nice feature of the
Feige-Shamir system is that it allows the extractor to “switch” witnesses in rounds 1–3, and hence
derive the desired contradiction.

Very detailed and formal proofs of the above properties (as opposed to the hand-waving proof
sketches above) are given in [1].

4 Proof of Knowledge for Number Theoretic Arguments

The preceding ends our discussion (for now, anyway) of generic proofs/arguments for languages
in NP . We now focus in efficient proofs of knowledge for specific number-theoretic relations. In
particular, we show a proof of knowledge of discrete logarithms. Let G be a finite, cyclic group
of prime order q. Let g be a generator for g, and let h ∈ G be arbitrary. Consider the following
protocol in which a prover P tries to convince a verifier that P indeed known the discrete logarithm
logg h (i.e., an x such that gx = h):

Steps P (g, x, h = gx) V (g, h)

1 r ←
�

q

2
A=gr

−−−−−−−−−−−−−−−→

3
c

←−−−−−−−−−−−−−−− c←
�

q

4 γ = cx + r mod q
γ

−−−−−−−−−−−−−−−→ verify gγ = hc · A

Figure 2: A PoK for discrete logarithms.

It is not hard to see that the above protocol is complete: if the prover is honest then

gγ = gcx+r = gcx · gr = hc · A .

We now sketch why this protocol is a proof of knowledge. The knowledge extractor E will be
similar to the one defined earlier: if P responds correctly to an initial challenge c then E will

24-6



repeatedly rewind P until it finds a different challenge c′ for which P also responds correctly.3 If E
can find two such challenges c, c′, we claim that it can then compute the desired discrete logarithm.
Indeed, this means that E has values A, c, c′, γ, γ′ such that gγ = hcA and gγ′

= hc′A. We claim
that logg h = (γ − γ′)(c − c′)−1 mod q (which can be computed easily; note that c − c′ 6= 0 by
construction). Indeed:

g
γ−γ′

c−c′ =
(

gγ−γ′

)1/(c−c′)

=
(

gγg−γ′

)1/(c−c′)

=

(

hcA

hc′A

)1/(c−c′)

=
(

hc−c′
)1/(c−c′)

= h ,

as claimed.

References

[1] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis, Weizmann
Institute of Science, 1990. Available at http://www.wisdom.weizmann.ac.il/~feige.

[2] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. Crypto ’89.

[3] O. Goldreich. Foundations of Cryptography, Vol 1: Basic Tools. Cambridge University Press,
2001.

[4] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems
for NP . Journal of Cryptology, 1996.

3As previously, E will also have to perform an exhaustive search for logg h in parallel so that it doesn’t run “too
long”. Details omitted.

24-7


