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1 Introduction

In a previous lecture, we defined the Byzantine agreement/broadcast problems and showed
that there is no protocol solving these problems when the fraction of corrupted players is
1/3 or larger. Today, we prove the converse by showing a protocol for broadcast (and hence
Byzantine agreement; cf. the previous lecture) when the fraction of corrupted players is
less than 1/3. The protocol we will show is called the Exponential Information Gathering
(EIG) protocol, and was essentially the first known protocol for this task (see [2, 4, 1, 3]).
We stress at the outset that the protocol is not very efficient — as the name suggests, its
complexity is exponential in the number of players — but it forms an important feasibility
result. Since the protocol was introduced, much work has focused on improving various
parameters of the protocol, and fully polynomial Byzantine agreement/broadcast protocols
with optimal resilience are now known.

2 The EIG Protocol

Let n be the number of players, and t be the upper-bound on the number of malicious
players (for simplicity, let the number of faults be exactly t). We show how to achieve
broadcast when t < n/3. To gain intuition, we describe how the protocol works for the
case of four players, when only one is assumed to be faulty. Let the players be denoted
A,B,C,D, and assume the sender A holds a value v. A begins by sending v to B,C,D,
who proceed to send the value they received from A to each other. At this point, each
player has a value that it received from A and values that the other two players report to
have received from A. Each player maintains this information in a tree (cf. Fig. 1). Each
player i ∈ {B,C,D} stores the value it received from A in the root of its tree, and the value
that node j ∈ {B,C,D} (including itself) says it received from A in node Aj. Each player
i ∈ {B,C,D} decides on the majority value of the latter three values (i.e., the values stored
at the leaves of the tree). If no majority value exists, the players decide on some default
value v0.

We proceed with the analysis: if A is non-faulty then one of B,C,D is faulty; without
loss of generality, assume it is B. Looking at the trees maintained by C and D, we see that
in each of their trees the value stored at leaves AC and AD is exactly v, the initial input
of the sender A. Thus, regardless of what B sends to C and D (i.e., regardless of what
appears at leaf AB in C’s tree and lead AB in D’s tree), C and D will decide on v, ad
required.

On the other hand, if A is faulty then B,C, and D are not faulty. Let vb, vc, vd denote
the values that A sent to B,C,D, respectively. Looking at the trees maintained by B,C,

27-1



V(A)

V(AB) V(AC) V(AD)

Figure 1: Information Gathering Tree for n = 4, k = 1.

and D, we see that each will have the value vb stored at leaf AB, the value vc stored at leaf
AC, and the value vd stored at leaf AD. Thus, they will all decide on some common value
(whatever that value may be) as required.

More generally, assume the network consists of n players A,B,C, . . ., of which t < n/3
are faulty (equivalently, n > 3t). The EIG algorithm, described below, involves the main-
tenance of a tree of height t (i.e., having t+1 levels) by each player. The root of the tree is
labeled with the sender A. Every internal node labeled ` (where ` is a string) has one child
for each player s that does not appear in `; the label of this child is `s, the concatenation
of the label of the parent with the name of the aforementioned player. The node labeled
`s is said to correspond to player s. For example, if we have players A,B,C,D,E, F,G,
then the root has children AB,AC,AD,AE,AF,AG; the node labeled AE has children
AEB,AEC,AED,AEF,AEG; and nodes AEF,AEG are said to correspond to F,G, re-
spectively.

The protocol proceeds in t + 1 rounds. In the first round, A sends its input v to all
other players. Each player stores the value it received from A in the root of its tree. In each
subsequent round, each player (except A, who no longer needs to take part in the protocol)
broadcasts the most-recently-filled level of its tree. Upon receiving these messages, each
player P fills the next level of its tree by storing at node `X the value that player X claims
to have stored at node ` in its own tree.1 Intuitively, player P stores in node A · · · Y X the
value that “X says that Y says . . . that the sender A said”. We refer to the value stored at
node ` in P ’s tree as vP (`). A generic information-gathering tree is depicted in Fig 2 (the
identity of the particular player maintaining the tree is omitted).

After completion of the t + 1 rounds, we define a reduced value for each node. For a
player P and a node labeled σ, the reduced value v ′

P (σ) is defined as follows:

• If σ is a leaf, then v′P (σ) = vP (σ).

• If σ is not a leaf, then v′P (σ) is the majority value of the reduced values of its children
(in P ’s tree). If no majority exists, v ′

P (σ) is assigned the default value v0.

Each player computes and decides on the reduced value of the root of its tree.
1
Note: this includes messages that player P sends “to itself”. Of course, no such message is actually sent

but P can certainly simulate the sending of such a message.
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Figure 2: A Generic Information Gathering Tree.

We now prove the correctness of this protocol. Each (honest) player maintains a tree
with t + 1 levels (numbered 1 through t + 1), and each node at level k has n − k children.
It follows that in the tree maintained by each player, every internal node has at least
n − t ≥ 2t + 1 children (of which at most t are faulty). The correctness of the protocol
follows from the following lemmas:

Lemma 1 If a node σ corresponds to a non-faulty player, then vP (σ) = vQ(σ) for all
non-faulty players P,Q.

Proof Let σ = σ′R, where R is a non-faulty player. The lemma follows easily from the
fact that R sends the same value vR(σ′) to all other players. (Note that the lemma holds
even when R ∈ {P,Q}.)

Lemma 2 If a node σ corresponds to a non-faulty player, then there is a value v such that
v′P (σ) = vP (σ) = v for any non-faulty player P .
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Proof By backward induction on the level of σ in the information-gathering tree.

Base case: Here, σ is a leaf. Then v′

P (σ) = vP (σ) for any honest P by the definition of
reduced values. Moreover, Lemma 1 shows that for any non-faulty player Q we have
vP (σ) = vQ(σ), and hence v′P (σ) = v′Q(σ) as well.

Inductive step: Assume the claim holds for all nodes at level k+1, and consider a node σ
at level k. Lemma 1 shows that all non-faulty processes P have the same value vP (σ).
Call this value v. Each non-faulty process will send v to all other processes in round
k + 1, so vQ(σP ) = v for all non-faulty P,Q. The inductive hypothesis now implies
that v′Q(σP ) = vQ(σP ) = v for all non-faulty P,Q. Since a majority of the children
of σ are non-faulty (by the argument above), this implies that v ′

Q(σ) = v = vQ(σ) for
all non-faulty Q.

If A is honest, the above lemma immediately implies that all non-faulty players decide
on the sender’s initial value. All that is left to be shown is that all non-faulty players reach
agreement when the sender is faulty. We prove a slightly stronger lemma:

Lemma 3 If all paths from a node σ to a leaf contain at least one node corresponding to a
non-faulty player, then v′P (σ) = v′Q(σ) for all non-faulty players P,Q.

Proof By backward induction on the level of σ in the information-gathering tree.

Base case: σ is a leaf. The claim reduces to Lemma 2.

Inductive step: Assume the claim holds for all nodes at level i + 1, and consider a node
σ at level i.

• If σ corresponds to a non-faulty node, the claim reduces to Lemma 2.

• If σ corresponds to a faulty node, consider a child σ ′ of σ. It must be the case that
all paths from σ′ to a leaf contain at least one node corresponding to a non-faulty
player. By the induction hypothesis, v ′

P (σ′) = v′Q(σ′) for all non-faulty players
P,Q. By the definition of the reduced value, it follows that v ′

P (σ) = v′Q(σ) too.

Notice that every path from the root of the information-gathering tree to a leaf contains
a node corresponding to a non-faulty player, because the length of any such path is t + 1
and there are at most t faulty players. Applying Lemma 3 to the root completes our proof.

We sum up the result with the following theorem:

Theorem 4 (n > 3t is sufficient for Byzantine agreement) There exists a protocol that
achieves Byzantine agreement when n > 3t.
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