
CMSC 858K — Advanced Topics in Cryptography May 11, 2004

Lecture 28

Lecturer: Jonathan Katz Scribe(s):
Nagaraj Anthapadmanabhan
Alvaro Cardenas

1 Introduction

In a previous class (Lecture 25), we showed how to construct an identification scheme
which is secure against a passive adversary using an Honest-Verifier Zero-Knowledge Proof
of Knowledge (HVZK-PoK). We also showed that it is possible to construct an Identifica-
tion Scheme secure against an active adversary using a Witness Indistinguishable Proof of
Knowledge (WI-PoK). In this lecture, we will construct efficient proof systems with these
properties, and thus efficient identification schemes, based on the discrete logarithm as-
sumption. We will also see how the resulting identification schemes can be converted into
signature schemes.

2 Security Against Passive Adversaries

We refer to Lecture 25 for the definitions of identification schemes and their security against
passive adversaries. We also refer there for a proof that an identification scheme can be con-
structed using any one-way function f and an HVZK-PoK of a value x such that f(x) = y
(where y is included in the prover’s public key). Here, we merely show a specific (efficient)
HVZK-PoK for the particular case when the one-way function f is the discrete exponen-
tiation function (and the hardness of inverting f is therefore equivalent to the discrete
logarithm assumption that we have seen previously). To establish some notation, let

�
be

a cyclic group of prime order q and let g be a fixed generator of
�

. We will assume that
�

, g, and q are publicly known. If y = gx then we let x
def
= logg y.

The setup is as follows (cf. Lecture 25): the verifier knows the prover’s public key y, while
the prover has a secret key x such that y = gx. The following protocol due to Schnorr [4]
allows the prover to prove to the verifier that he indeed knows x:

�
, q, g, y

P(x) V

r ← � q
A = gr

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−
c← � q

b = (cx + r) mod q
−−−−−−−−−−−−−−−→

ycA
?
= gb

Let us first show that the above scheme is correct. If both players act honestly and
y = gx, then we have:

gb = gcx+r = gcxgr = ycA,

28-1

where we use the fact that the order of the group is q, and so exponents are reduced
modulo q (i.e., gcx+r = gcx+r mod q). We now prove that the above protocol satisfies the
desired properties.

Theorem 1 The protocol above is both honest-verifier zero-knowledge as well as a proof of
knowledge.

Proof We prove that the protocol is honest-verifier zero-knowledge by showing a simu-
lator. The simulator proceeds as follows: it first chooses random c, b ∈ � q and then sets
A = gby−c. It outputs the transcript (A, c, b). We claim that the distribution of transcripts
as output by this simulator is identical to the distribution of transcripts of real executions
of the protocol (with an honest verifier). To see this, note that c is uniform in � q in both
cases. Furthermore, the distributions of both real and simulated transcripts have A uniform
in the group, independent of c. (This is clear for real transcripts since g is a generator and
r is chosen uniformly at random from � q, independent of c. For simulated transcripts, this
is true since the value gb is uniform in

�
and hence — for any c — the value gby−c is

uniform in
�

.) Finally, in both cases b is completely determined by A and c as the unique
value satisfying b = (c · logg y + r) mod q (note that logg y is well-defined, even if we cannot
compute it efficiently). This completes this part of the proof.

To show that the protocol is a proof of knowledge, one needs to show a knowledge
extractor satisfying the technical conditions hinted at (but not defined formally) in earlier
lectures. Assume an adversarial prover who has some probability λ of successfully executing
the protocol for a particular value of y. Note that this probability is only over the random
challenge c sent in the second round. Before describing the extractor, we define some
terminology: say the adversary succeeds on challenge c (assuming A is already fixed) if
the adversary responds to this challenge with a b such that ycA = gb. Otherwise, say the
adversary fails. We construct the extractor as follows:

Receive some A from the adversary
choose c1 ← � q and send c1 to the adversary
if the adversary fails on c1, halt
otherwise, for i = 1 to q do:

choose c2 ← � q \ {c1}
if the adversary succeeds on c2, compute logg y as described below and halt

if gi = y, output i and halt

To complete the description, we describe how to compute logg y when the extractor finds
c1, c2 such that the adversary succeeds for both. In this case, we have A, c1, c2, b1, b2 such
that yc1A = gb1 and yc2A = gb2 . Dividing, we obtain:

yc1−c2 = gb1−b2 ,

and hence logg y = (b1 − b2)(c1 − c2)
−1 mod q. Note that we can efficiently compute the

latter since we have b1, b2, c1, c2, q, and c1 6= c2 so (c1 − c2)
−1 exists.

Analyzing the extractor in its totality, we see that it computes the correct value for
logg y whenever the adversary succeeds on c1. By assumption, this occurs with probability
exactly λ. The only thing left to argue is that the extractor runs in expected polynomial

28-2

time. To see this, we consider two possibilities: λ > 1/q and λ = 1/q (if λ < 1/q then
λ = 0 and the proof is easy). In the first case, say λ = t/q for some integer t > 1. Now,
the probability that the extractor enters the loop (i.e., the last four lines) is λ = t/q. The
expected number of iterations of the loop, once reached, is (t−1

q
)−1 = q/(t − 1). So the

expected total running time of the extractor is

poly + poly ·
t

q
·

q

t− 1
= poly + poly.

(Where poly in the above refers to some arbitrary polynomial in some implicit security
parameter which determined the size of q.) In case λ = 1/q the expected number of
iterations of the loop is (at worst) q; however, the probability of entering the loop in the
first place is 1/q and so the expected total running time is:

poly + poly ·
1

q
· q = poly + poly.

In either case, then, the extractor runs in expected polynomial time.

3 Security Against Active Adversaries

As discussed in Lecture 25, to obtain security against active adversaries we can use a
witness-indistinguishable proof of knowledge. Recall also that this only helps if there is
more than one witness to speak of; for this reason we will now let the prover’s secret be a
representation of some value y with respect to two generators g, h. In more detail, if g, h ∈

�

are generators we say that (x1, x2) is a representation of y if gx1hx2 = y. Note that for any
y ∈

�
and any x1 ∈ � q there is a unique x2 ∈ � q such that (x1, x2) is a representation of y.

In other words, there are q possible different “witnesses” or representations.
Whereas Schnorr’s protocol is a proof of knowledge of the discrete logarithm of y (with

respect to g), the following protocol due to Okamoto [3] is a proof of knowledge of a
representation of y (with respect to g, h).

�
, q, g, h, y

P(x1, x2) V

r1, r2 ← � q
A = gr1hr2

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−
c← � q

b1 = (cx1 + r1) mod q

b2 = (cx2 + r2) mod q
b1, b2

−−−−−−−−−−−−−−−→
Ayc ?

= gb1hb2

Let us first verify correctness. If gx1hx2 = y then we have:

Ayc = gr1hr2(gx1hx2)c = gr1+cx1hr2+cx2 = gb1hb2 .

We now prove the desired properties of this protocol

28-3

Theorem 2 The protocol above is a witness indistinguishable proof of knowledge.

Proof The proof of knowledge property is easy to show, along the lines of the proof for
the case of Schnorr’s protocol. Without going through the details again, we simply show
how to extract a representation from two accepting transcripts sharing the same value of A.
Thus, assume we have values A, c, c′, b1, b2, b

′

1, b
′

2 such that Ayc = gb1hb2 and Ayc′ = gb′
1hb′

2

but c 6= c′. Dividing, we obtain yc−c′ = gb1−b′
1hb2−b′

2 and so (
b1−b′

1

c−c′
,

b2−b′
2

c−c
) is a representation

of y (again, we use the fact that c− c′ 6= 0 so that the necessary inverse exists).
It remains to argue that the protocol is witness indistinguishable. To prove this, we

show that for any adversarial verifier V∗ and any two representations (x1, x2), (x′

1, x
′

2), the
distribution on the transcripts of an execution of the protocol when the prover uses the
first representation is identical to the distribution on the transcripts of an execution of the
protocol when the prover uses the second representation. First note that the distribution
over the first message A sent by the prover is independent of the representation being
used. Next, the challenge c may be viewed as a deterministic function of A (since we can
imagine fixing the random coins of the dishonest verifier — note that c may be chosen using
some arbitrary (poly-time) function, since the adversary may not be following the honest
verification procedure), and so the distribution on c is each case will be identical.

It only remains to argue about the final message b1, b2. Conditioned on some fixed
values of A, c, when the prover is using the first representation this message is distributed
according to:

b1 = cx1 + r1

b2 = cx2 + r2,

where r1, r2 are uniformly distributed over representations of A. (Another way to view this
distribution is one in which r1 is chosen uniformly from � q and then r2 is the unique value
such that (r1, r2) is a representation of A.) It is not hard to see that this is equivalent
to saying that b1, b2 are uniformly distributed over representations of Ayc. (Namely, b1 is
uniform in � q and then b2 is the unique value such that (b1, b2) is a representation of Ayc.)
Conditioned on the same values of A, c, when the prover is using the second representation
the final message is distributed according to:

b1 = cx′

1 + r1

b2 = cx′

2 + r2,

where r1, r2 are uniformly distributed over representations of A. But then b1, b2 are again
distributed uniformly over representations of Ayc.

The above discussion shows that the protocol is perfectly witness indistinguishable.

The above theorem does not quite allow us to directly apply the results from Lecture 25
and claim that Okamoto’s scheme is an identification scheme secure against active adver-
saries. (If we were directly following the paradigm of Lecture 25, then we would have the
prover’s public key be y1, y2 and the prover would give a witness-indistinguishable proof
of knowledge of either logg y1 or logg y2.) However, the same ideas behind the proof of
Theorem 2, Lecture 25 can be used to prove this result. We assume the reader is familiar
with that proof, and just sketch an outline of the proof here.

28-4

Theorem 3 The protocol above gives an identification scheme secure against active adver-
saries.

Proof (Sketch) Given an active adversary A attacking the scheme, we will use this
adversary to compute logg h (not logg y or something similar as in the case of Schnorr’s
protocol!). We do this as follows:

1. Given input g, h we choose random x1, x2 and set y = gx1hx2 . The public key y is
given to A and the secret key is (x1, x2). Note that we know a perfectly valid secret
key for y!

2. We then interact with A, who will be acting as a dishonest verifier. Note that we can
easily simulate the actions of a prover (without any rewinding or any difficulty) since
we know a valid representation of y.

3. Once A is done with the previous stage, it then tries to impersonate the prover. If
it succeeds, we run the knowledge extractor for the proof of knowledge to extract a
representation (x′

1, x
′

2) for y.

4. Assuming we have extracted some (x′

1, x
′

2) as above, the key claim is that with all
but negligible probability we have (x′

1, x
′

2) 6= (x1, x2). Why should this be the case?
Well, since the protocol is perfectly witness indistinguishable, A has no idea (in an
information-theoretic sense) which representation of y we know, and all valid rep-
resentations are equally likely from A’s point of view. Since there are q possible
representations, (x′

1, x
′

2) = (x1, x2) with probability 1/q, which is negligible.

5. Assuming we have extracted a representation (x′

1, x
′

2) different from (x1, x2), we can
compute logg h by noting that gx1hx2 = gx′

1hx′

2 and so

gx1−x′

1 = hx′

2
−x2 .

Thus, logg h = (x1 − x′

1)(x
′

2 − x2)
−1 mod q. (Note that since the representations are

different we must have x′

2 6= x2 mod q.)

6. Putting everything together, if A succeeds with non-negligible probability, then we
compute logg h with non-negligible probability.

4 From Identification Schemes to Signature Schemes

In this section, we show how any identification scheme of a certain form can be transformed
into a signature scheme in the random oracle model. Assume a 3-round identification scheme
in which the challenge sent by an honest verifier in the second round is generated by picking
an element uniformly at random from some space. (The technique extends for multi-round
protocols but we will deal with the 3-round case here since this is most common and leads
to the most efficient signature schemes.) Let A, c, b denote the messages sent in the first,

28-5

second, and third rounds, respectively. We transform this protocol into a signature scheme
in the following way: the signer’s public key is the public key of the identification scheme
and the secret key is the secret key of the identification scheme. To sign message m, the
signer begins by generating an initial message A just as in the identification scheme. The
signer then computes c = H(A,m) where H is a cryptographic hash function modeled as
a random oracle. Finally, the signer computes the correct response b to this “challenge” c
(using the secret key and its knowledge of how A was generated) and outputs the signature
(A, b). Anyone can verify this signature on message m by computing c = H(A,m) and then
checking whether (A, c, b) is a valid transcript of the identification protocol with respect to
the given public key. Applied to the Schnorr identification protocol, we obtain:

PK = (
�

, q, g, y)
SignSK(m) (where SK = x = logg y) V(PK,m)

r ← � q;A = gr

c = H(A,m); b = cx + r
A, b

−−−−−−−−−−−−−−−→
c = H(A,m)

ycA
?
= gb

The general transformation described above (i.e., for an arbitrary identification scheme)
was first proposed by Fiat and Shamir [2] and is known as the Fiat-Shamir transformation.
It has since been analyzed rigorously in numerous works. We state the following without
proof, and refer the interested reader to [1] for more details and a full proof.

Theorem 4 When the Fiat-Shamir transformation is applied to any identification scheme
(of the appropriate form) which is secure against passive attacks, the resulting signature
scheme is existentially unforgeable under adaptive chosen-message attacks in the random
oracle model.

The above theorem is quite nice, in that it shows that an identification protocol secure
against a very weak form of attack (i.e., a passive attack) suffices to give a signature scheme
which is secure in (essentially) the strongest sense.

References

[1] M. Abdalla, J. H. An, M. Bellare, C. Namprempre. From Identification to Signatures via
the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security.
Eurocrypt 2002.

[2] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. Crypto ’86.

[3] T. Okamoto. Provably-Secure and Practical Identification Schemes and Corresponding
Signature Schemes. Crypto ’92.

[4] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. Crypto ’89.

28-6

