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1 Introduction

In the last lecture, we introduced the notion of semantic security and gave a formal definition
for semantic security with respect to public-key encryption schemes. It was shown that given
the existence of hard-core bits, it is possible to construct a semantically secure public-key
encryption scheme for messages of length one bit. In this lecture, we introduce the hybrid
technique and use it to prove that semantic security of the constructed encryption scheme
can be extended to polynomially-many messages (of arbitrary polynomial length).

We begin by reviewing the construction of a semantically-secure public-key encryption
scheme from a trapdoor permutation. Let F = (Gen,Eval, Invert) be a trapdoor permutation
family and H = {hk} be a hard-core bit for F . Then we can construct the following public-
key encryption scheme PKE = (KeyGen, E ,D) for the encryption of 1-bit messages:

KeyGen(1k): (f, f−1)← Gen(1k)
PK = (f, hk)
SK = f−1

EPK(m): r ← {0, 1}k

output 〈f(r), hk(r)⊕m〉

DSK(〈y, b〉): output b⊕ hk(f
−1(y))

We showed in class last time that the encryption scheme above is semantically secure. In
particular, this implies the following theorem:

Theorem 1 Assuming trapdoor permutations exist, there exists a public-key encryption
scheme achieving semantic security (or security in the sense of indistinguishability).

2 Security for Multiple Messages

The encryption scheme above is semantically secure for messages of length one bit. Would
the scheme remain secure if it is applied (in the natural bit-by-bit fashion1) to messages
of length longer than one bit? Equivalently, is the scheme still secure if it is used to
encrypt multiple messages, each of length one bit? If the adversary is able to eavesdrop

1Here, encryption of m = m1 · · ·m` (with mi ∈ {0, 1}) is given by EPK(m1) · · · EPK(m`). The only
subtlety here is that independent random coins must be used for every invocation of the encryption algorithm.
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on these messages, will she obtain extra information (perhaps correlated information about
the various messages) and be able to break the semantic security of the encryption scheme?

To model this stronger attack scenario where the adversary can intercept multiple mes-
sages via eavesdropping, we introduce the concept of an encryption oracle EPK,b(·, ·) which
the adversary can query as many times as it wants. This oracle takes as input two messages

m0,m1 of equal length, and we define EPK,b(m0,m1)
def
= EPK(mb) (where new random coins

are used to encrypt mb each time the oracle is invoked). A scheme is secure if the adversary
cannot guess the value of the bit b used by the encryption oracle (with much better than
probability 1/2). A formal definition follows.

Definition 1 A public-key encryption scheme PKE = (KeyGen, E ,D) is secure in the sense
of left-or-right indistinguishability if the following is negligible (in k) for any ppt adversary:

∣
∣
∣Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·)(PK) = b
]

− 1/2
∣
∣
∣ .

♦

Theorem 2 If a public-key encryption scheme PKE = (KeyGen, E ,D) is semantically se-
cure, then it is also secure in the sense of left-or-right indistinguishability.

Proof To prove this theorem, the hybrid argument is introduced. This technique plays
a central role in demonstrating the indistinguishability of complex ensembles based on the
indistinguishability of simpler ensembles. However, before we define the technique and
prove the more general case, we will show that a semantically secure encryption scheme (for
one message) is secure in the sense of left-or-right indistinguishability when two messages
are encrypted. This is represented by allowing the adversary to have oracle access to the
encryption oracle twice.

We will, as usual, perform a proof by contradiction: assume toward a contradiction
that PKE is semantically secure but not left-or-right secure. This means that we have
a ppt adversary A that can break the PKE in the left-or-right indistinguishability sense
with non-negligible probability. Using this adversary we will construct a ppt algorithm
that breaks the semantic security of the PKE with non-negligible probability. This is a
contradiction as according to the theorem PKE is semantically secure.

In what follows we will let the key generation step be implicit in order to make the
notation more readable. Construct adversary Â1 that can access the encryption oracle just
once, and tries to break semantic security as follows:

Â
EPK,b(·,·)
1 (PK)

Run A(PK)
At some point A asks for EPK,b(m0,m1)

Â1 queries its own encryption oracle and returns c← EPK,b(m0,m1) to A
Later, A requests a second encryption EPK,b(m

′
0,m

′
1)

Â1 returns c′ ← EPK(m′
0) to A (i.e., it encrypts m′

0 itself )

Â1 outputs the final output of A
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Since A runs in polynomial time so does Â1. The probability that Â1 succeeds is:

Succ
Â1

def
= Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : Â
EPK,b(·,·)
1 (PK) = b

]

(1)

= Pr
[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·),EPK,0(·,·)(PK) = b
]

= Pr
[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

×
1

2

+Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

×
1

2
,

where we have abused notation and written AEPK,b1
(·,·),EPK,b2

(·,·) to indicate that the first
time A accesses its oracle, the oracle uses bit b1, whereas the second time A accesses its
oracle, the oracle uses bit b2.

Similarly, we construct an adversary Â
EPK,b(·,·)
2 that accesses the encryption oracle just

once and runs as follows:

Â
EPK,b(·,·)
2 (PK)

Run A(PK)
At some point A asks for EPK,b(m0,m1)

Â2 returns c← EPK(m1) to A (i.e., it encrypts m1 itself )
Later, A requests a second encryption EPK,b(m

′
0,m

′
1)

Â2 queries its own encryption oracle and returns c′ ← EPK,b(m
′
0,m

′
1) to A

Â2 outputs the final output of A

Again, Â2 is clearly a ppt algorithm. The probability that Â2 succeeds is:

Succ
Â2

def
= Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : Â
EPK,b(·,·)
2 (PK) = b

]

(2)

= Pr
[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,1(·,·),EPK,b(·,·)(PK) = b
]

= Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

×
1

2

+Pr
[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

×
1

2
.

We now express A’s advantage2 in breaking the left-or-right indistinguishability of the
scheme in terms of Equations (1) and (2):

AdvA
def
=

∣
∣
∣
∣
Pr

[

(PK,SK)← KeyGen(1k); b← {0, 1} : AEPK,b(·,·)(PK) = b
]

−
1

2

∣
∣
∣
∣

=

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣

2An adversary’s advantage in this setting is simply the absolute value of its success probability (i.e., the
probability that it correctly guesses b) minus 1/2.
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=

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

− 1

∣
∣
∣
∣
,

(3)

where we use the fact (from basic probability theory) that

Pr
[

AEPK,1(·,·)EPK,0(·,·)(PK) = 0
]

+ Pr
[

AEPK,1(·,·)EPK,0(·,·)(PK) = 1
]

= 1.

Continuing, we obtain:

AdvA ≤

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,1(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣

+

∣
∣
∣
∣

1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,1(·,·),EPK,0(·,·)(PK) = 1
]

+
1

2
· Pr

[

(PK,SK)← KeyGen(1k) : AEPK,0(·,·),EPK,0(·,·)(PK) = 0
]

−
1

2

∣
∣
∣
∣
.

= Adv
Â2

+ Adv
Â1

.

Since (by our initial assumption) AdvA was non negligible, the above implies that at least
one of Adv

Â1
or Adv

Â2
must be non negligible. However, this would imply that at least

one of Â1 or Â2 violate the semantic security of the encryption scheme, contradicting the
assumption of the theorem.

2.1 The Hybrid Argument

We can generalize the proof technique used above so that it applies to any indistinguishable
distributions (the technique is referred to as the “hybrid argument”). We formalize this
idea now by first defining computational indistinguishability.

Definition 2 Let X = {Xk} and Y = {Yk} be ensembles of distributions, where for
all k, Xk and Yk are distributions over the same space. X and Y are computationally

indistinguishable (written X
c
≡ Y) if the following is negligible (in k) for all ppt A:

|Pr [x← Xk;A(x) = 1]− Pr [y ← Yk;A(y) = 1]| . (4)

♦

We will sometimes be informal and refer to “distributions” instead of “ensembles of distri-
butions”.
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As an example of how this notation may be used, we give an equivalent definition of
semantic security (for a single bit) in terms of computational indistinguishability. Namely,
let

Xk
def
= {(PK,SK)← KeyGen(1k);C ← EPK(0) : (PK,C)}

and
Yk

def
= {(PK,SK)← KeyGen(1k);C ← EPK(1) : (PK,C)}.

Then encryption scheme (KeyGen, E ,D) is semantically-secure (for encryption of a single

bit) if and only if {Xk}
c
≡ {Yk}.

Before continuing with our discussion of the “hybrid argument”, we note the following
useful properties of computational indistinguishability:

Claim 3 If X
c
≡ Y and Y

c
≡ Z then X

c
≡ Z.

Sketch of Proof (Informal) The proof relies on the triangle inequality (namely, the fact
that for any real numbers a, b, c we have |a − b| ≤ |a − b| + |b − c|) and the fact that the
sum of two negligible functions is negligible.

In fact, we can extend this claim as follows:

Claim 4 (Transitivity) Given polynomially many distributions X1, . . . ,X`(k) for which

Xi
c
≡ Xi+1 for i = 1, . . . , `(k)− 1, then X1

c
≡ X`(k)

Sketch of Proof (Informal) The proof again uses the triangle inequality along with the
fact that the sum of a polynomial number of negligible functions remains negligible.

Note that the claim does not hold for a super-polynomial number of distributions.
We now formalize the hybrid argument.

Claim 5 (Hybrid argument) Let X 1,X 2,Y1,Y2 be efficiently sampleable3 distributions

for which X 1 c
≡ Y1 and X 2 c

≡ Y2. Then (X 1,X 2)
c
≡ (Y1,Y2). (Note: if X = {Xk} and Y =

{Yk} are two distribution ensembles, the notation (X ,Y) refers to the distribution ensemble
{(Xk, Yk)} where the distribution (Xk, Yk) is defined by {x← Xk; y ← Yk : (x, y)}.)

Proof Instead of proving this by contradiction, we prove it directly. Let A be an arbi-
trary ppt algorithm trying to distinguish (X 1,X 2) and (Y1,Y2). We may construct a ppt

adversary A1 trying to distinguish X 1 and Y1 as follows:

A1(1
k, z)

Choose random x← X2
k

output A(z, x)

Clearly, A1 runs in polynomial time (here is where we use the fact that all our distributions

are efficiently sampleable). Since X 1 c
≡ Y1 we therefore know that the following must be

3A distribution ensemble X = {Xk} is efficiently-sampleable if we can generate an element according to
distribution Xk in time polynomial in k.
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negligible:

∣
∣Pr

[
z ← X1

k : A1(z) = 1
]
− Pr

[
z ← Y 1

k : A1(z) = 1
]∣
∣ (5)

=
∣
∣Pr

[
z ← X1

k ;x← X2
k : A(z, x) = 1

]
− Pr

[
z ← Y 1

k ;x← X2
k : A(z, x) = 1

]∣
∣

=
∣
∣Pr

[
x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1

]
− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]∣
∣ ,

where the last line is simply a renaming of the variables.
We may similarly construct a ppt algorithm A2 trying to distinguish X 2 and Y2 that

runs as follows:
A2(1

k, z)

Choose random y ← Y1
k

Output A(y, z)

Here, since X 2 c
≡ Y2 we know that the following is negligible:

∣
∣Pr

[
z ← X2

k : A2(z) = 1
]
− Pr

[
z ← Y 2

k : A2(z) = 1
]∣
∣

=
∣
∣Pr

[
y ← Y1

k ; z ← X2
k : A(y, z) = 1

]
− Pr

[
y ← Y 1

k ; z ← Y 2
k : A(y, z) = 1

]∣
∣

=
∣
∣Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr

[
y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1

]∣
∣ .

Of course, what we are really interested in is how well A does at distinguishing (X 1,X 2)
and (Y1,Y2). We can bound this quantity as follows:

∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

=
∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]

+Pr
[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

≤
∣
∣Pr[x1 ← X1

k ;x2 ← X2
k : A(x1, x2) = 1]− Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]∣
∣

+
∣
∣Pr

[
y1 ← Y 1

k ;x2 ← X2
k : A(y1, x2) = 1

]
− Pr[y1 ← Y 1

k ; y2 ← Y 2
k : A(y1, y2) = 1]

∣
∣

(where we have again applied the triangle inequality). The last two terms are exactly
Equations (5) and (6), and we know they are negligible. Since the sum of two negligible
quantities is negligible, the distinguishing advantage of A is negligible, as desired.

This is called a “hybrid argument” for the following reason: Looking at the structure of
the proof, we introduced the “hybrid” distribution (Y 1,X 2) (which is not equal to either of

the distributions we are ultimately interested in) and noted that (X 1,X 2)
c
≡ (Y1,X 2) and

(Y1,X 2)
c
≡ (Y1,Y2) (this was the purpose of A1 and A2, respectively). Applying Claim 3

(which we essentially re-derived above) gives the desired result.
A similar argument can be used for combinations of poly-many ensembles instead of two

ensembles, but we omit the details. Furthermore, a corollary of the above is that if X
c
≡ Y

then polynomially-many copies of X are indistinguishable from polynomially-many copies
of Y. Formally, let `(k) be a polynomial and define X ` = {X`

k} as follows:

X`
k

def
= (

`(k) times
︷ ︸︸ ︷

Xk, . . . , Xk)

(and similarly for Y`). Then X ` c
≡ Y`.
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Strictly speaking, Claim 5 is not quite enough to yield Theorem 2 directly. The problem
is the following: recall that if (KeyGen, E ,D) is a semantically-secure encryption scheme for
a single bit then the following ensembles are computationally indistinguishable:

Xk
def
= {(PK,SK) ← KeyGen(1k);C ← EPK(0) : (PK,C)}

Yk
def
= {(PK,SK)← KeyGen(1k);C ← EPK(1) : (PK,C)}.

But then applying the hybrid argument directly only tells us that the following are indis-
tinguishable:

(Xk, Xk) =

{
(PK,SK), (PK ′, SK ′)← KeyGen(1k)

C ← EPK(0);C ′ ← EPK′(0)
: (PK,C, PK ′, C ′)

}

(Yk, Yk) =

{
(PK,SK), (PK ′, SK ′)← KeyGen(1k)

C ← EPK(1);C ′ ← EPK′(1)
: (PK,C, PK ′, C ′)

}

;

here, encryption is done with respect to two different public keys, not a single key as
desired. Even so, the hybrid technique is essentially what is used to prove Theorem 2 and
we therefore refer to it as such. As a final remark, note that it is crucial in the proof of
Theorem 2 that an adversary can generate random encryptions4 as can be done in any
public-key encryption scheme. In particular, an analogue of Theorem 2 does not hold for
the case of private-key encryption, where an adversary may be unable to generate legal
ciphertexts corresponding to an unknown key.

4In fact, this directly parallels the requirement in Claim 5 that the distribution ensembles be efficiently
sampleable.
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