
CMSC 858K — Advanced Topics in Cryptography February 5, 2004

Lecture 4

Lecturer: Jonathan Katz Scribe(s):
Chiu Yuen Koo
Nikolai Yakovenko
Jeffrey Blank

1 Summary

The focus of this lecture is efficient public-key encryption. In the previous lecture, we
discussed a public-key encryption scheme for 1-bit messages. However, to encrypt an `-bit
message, we can simply encrypt ` one-bit messages and send these (and we proved last
time that this remains secure in the case of public-key encryption). Here, we first describe
(briefly) how to combine public and private key encryption to obtain a public-key encryption
scheme with the efficiency of a private-key scheme (for long messages). Next, we describe
an efficient public key encryption scheme called El Gamal encryption [2] which is based on
a particular number-theoretic assumption rather than the general assumption of trapdoor
permutations. In the course of introducing this scheme, we discuss how it relies on the
Discrete Logarithm Problem and the Decisional Diffie-Hellman Assumption.

2 Hybrid Encryption

A hybrid encryption scheme uses public-key encryption to encrypt a random symmetric key,
and then proceeds to encrypt the message with that symmetric key. The receiver decrypts
the symmetric key using the public-key encryption scheme and then uses the recovered
symmetric key to decrypt the message.

More formally, let (KeyGen, E , D) be a secure public- key encryption scheme and (E ′,
D′) be a secure private-key encryption scheme. We can construct a secure hybrid encryption
scheme (KeyGen”, E ′′,D′′) as follows:

• KeyGen” is the same as KeyGen, generating a public key pk and a secret key sk.

• E ′′pk(m):

1. sk′ ← {0, 1}k

2. C1 ← Epk(sk
′)

3. C2 ← E
′

sk′(m)

• D′′

sk(C1, C2):

1. sk′ = Dsk(C1)

2. m = D′

sk′(C2)

The above scheme can be proven semantically-secure, assuming the semantic security of
the underlying public- and private-key schemes. However, we will not give a proof so here.

4-1

3 The El Gamal Encryption Scheme

3.1 Groups

Before describing the El Gamal encryption scheme, we give a very brief overview of the
group theory necessary to understand the scheme. We will need to concept of a finite,
cyclic group, so we first introduce the concept of a finite group (actually, we will introduce
what is known as an Abelian group, since we will not use non-Abelian groups in this class).

Definition 1 An Abelian group G is a finite set of elements along with an operation ∗
(written multiplicatively, although not necessarily corresponding to integer multiplication!)
such that:

Closure For all a, b ∈ G we have a ∗ b ∈ G. Since we are using multiplicative notation, we
also write a ∗ b as ab when convenient.

Associativity For all a, b, c ∈ G, we have (ab)c = a(bc).

Commutativity For all a, b ∈ G we have ab = ba.

Existence of identity There exists an element 1 ∈ G such that 1 ∗ a = a for all a ∈ G.
This element is called the identity of G.

Inverse For all a ∈ G there exists an element a−1 ∈ G such that aa−1 = 1.

♦

If n is a positive integer and a ∈ G, the notation an simply refers to the product of a with
itself n times. Just as we are used to, we have a0 = 1 and a1 = a for all a ∈ G. Let q = |G|
(i.e., the number of elements in G); this is known as the order of G. A useful result is the
following theorem:

Theorem 1 Let G be a finite Abelian group of order q. Then aq = 1 for all a ∈ G.

Proof We may actually give a simple proof of this theorem. Let a1, . . . , aq be the elements
of G, and let a ∈ G be arbitrary. We may note that the sequence of elements aa1, aa2, . . . , aaq

also contains exactly the elements of G (clearly, this sequence contains at most q distinct
elements; furthermore, if aai = aaj then we can multiply by a−1 on both sides to obtain
ai = aj which is not the case). So:

a1 · a2 · · · aq

= (aa1) · (aa2) · · · (aaq)

= aq(a1 · a2 · · · aq).

Multiplying each side by (a1 · · · aq)
−1, we see that aq = 1.

We mention the following easy corollary:

Corollary 2 Let G be a finite Abelian group of order q, and let n be a positive integer.
Then gn = gn mod q.

4-2

Proof Let n = nq mod q so that n can be written as n = aq + nq for some integer a. We
then have gn = gaq+nq = (ga)qgnq = gnq .

A finite group G of order q is cyclic if there exists an element g ∈ G such that the set
{g0, g1, . . . , gq−1} is all of G. (Note that gq = g0 = 1 by the above theorem, so that the
sequence would simply “cycle” if continued.) If such a g exists, it is called a generator of G.
As an example, consider the group

�
∗

5 = {1, 2, 3, 4} under multiplication modulo 5. Since
42 = 1, the element 4 is not a generator. However, since 21 = 2, 22 = 4, and 23 = 3, element
2 is a generator and

�
∗

5 is cyclic.
All the groups we are going to deal with here will be cyclic, and will additionally have

prime order (i.e., |G| = q and q is prime.) The following is a simple fact in such groups:

Lemma 3 If G is an Abelian group with prime order q, then (1) G is cyclic; furthermore,
(2) every element of G (except the identity) is a generator.

Proof We do not prove that G is cyclic, but instead refer the reader to any book on group
theory. However, assuming G is cyclic, we may prove the second part. Let g be a generator
of G, and consider an element h ∈ G \ {1}. We know that h = gi for some i between 1 and
q − 1. Consider the set G ′ = {1, h, h2, . . . , hq−1}. By the closure property, G ′ ⊆ G. On the
other hand, if hx = hy for some 1 ≤ x < y ≤ q − 1 then gxi = gyi. By the Corollary given
above, this implies that xi = yi mod q, or, equivalently, that q divides (y − x)i. However,
since q is prime and both (y − x) and i are strictly less than q, this cannot occur. This
implies that all elements in G ′ are unique, and hence h is a generator.

An important fact about a cyclic group G of order q is that given a generator g, every
element of h ∈ G satisfies h = gs for exactly one s between 0 and q − 1 (this follows
immediately from the definition of a generator). In this case, we say logg h = s (the
previous fact indicates that this is well-defined as long as g is a generator) and call s the
discrete logarithm of h to the base g. Discrete logarithms satisfy many of the rules you are
familiar with for logarithms over the reals; for example (always assuming g is a generator),
we have logg(h1h2) = logg h1 + logg h2 for all h1, h2 ∈ G.

For our applications to cryptographic protocols, we will consider groups of very large
order (on the order of q ≈ 2100 or more!). When dealing with such large numbers, it is
important to verify that the desired arithmetic operations can be done efficiently. As usual,
we associate “efficient” with “polynomial time”. The only subtlety here is that the running
time should be polynomial in the lengths of all inputs (and not their absolute value); so, for
example, computing gx for some generator g in some group G should require time polynomial
in |x| (equivalently, the number of bits needed to describe x) and |q|, rather than polynomial
in x and q. This clearly makes a big difference — an algorithm running in 2100 steps is
infeasible, while one running in 100 steps certainly is!

We will take it as a given that all the groups with which we will deal support efficient
“base” operations such as multiplication, equality testing, and membership testing. (Yet,
for some groups that are used in cryptography, verifying these properties is non-trivial!)
However, we do not assume that exponentiation is efficient, but will instead show that it
can be done efficiently (assuming that multiplication in the group can be done efficiently).

To see that this is not entirely trivial, consider the following naive algorithm to compute
gx for some element g in some group G (the exponent x is, of course, a positive integer):

4-3

exponentiate naive(g , x) {
ans = 1;

if x
?
= 0 return 1;

while(x ≥ 1){
ans = ans ∗ g;
x = x− 1;

}
return ans; }

(In the above algorithm, the expression ans ∗ g means multiplication in the group and not
over the integers.) However, this algorithm requires time O(x) to run (there are x iterations
of the loop), which is unacceptable and not polynomial time! However, we can improve this
by using repeated squaring. First, note that:

gx =

{

(g
x

2)2 if x is even

g(g
x−1

2)2 if x is odd
.

This leads us to the following algorithm for exponentiation:

exponentiate efficient (g, x) {

if (x
?
= 0) return 1;

tmp = 1, ans = g;
// we maintain the invariant that tmp ∗ ansx is our answer
while (x > 1) {

if (x is odd) {
tmp = tmp ∗ ans;
x = x− 1; }

if (x > 1) {
ans = ans ∗ ans;
x = x/2; }

}
return tmp ∗ ans; }

(Again, the “ ∗ ” in the above code refers to multiplication in the group, not over the
integers. However, expressions involving x are performed over the integers.) Note that in
each execution of the loop the value of x is decreased by at least half, and thus the number
of executions of this loop is O(log x) = O(|x|). Thus, the algorithm as a whole runs in
polynomial time.

From the above, we see that given a generator g and an integer x, we can compute
h = gx in polynomial time. What about the inverse problem of finding x given h and g?
This is known as the discrete logarithm problem which we define next.

3.2 The Discrete Logarithm Problem

The discrete logarithm problem is as follows: given generator g and random element h ∈ G,
compute logg h. For many groups, this problem is conjectured to be “hard”; this is referred

4-4

to as the discrete logarithm assumption which we make precise now. In the following, we
let GroupGen be a polynomial time algorithm which on input 1k outputs a description of
a cyclic group G of order q (with |q| = k and q not necessarily prime), and also outputs q
and a generator g ∈ G. (Note that GroupGen may possibly be deterministic.) The discrete
logarithm assumption is simply that the assumption that the discrete logarithm problem is
hard for GroupGen, where this is defined as follows:

Definition 2 The discrete logarithm problem is hard for GroupGen if the following is neg-
ligible for all ppt algorithms A:

Pr[(G, q, g) ← GroupGen(1k);h← G;x← A(G, q, g, h) : gx = h].

♦

Sometimes, if the discrete logarithm problem is hard for GroupGen and G is a group output
by GroupGen, we will informally say that the discrete logarithm problem is hard in G.

We provide an example of a GroupGen for which the discrete logarithm assumption is
believed to hold: Let GroupGen be an algorithm which, on input 1k, generates a random
prime q of length k (note that this can be done efficiently via a randomized algorithm), and
let G =

�
∗

q. It is known that this forms a cyclic group of order q − 1 (not a prime). It is
also known how to efficiently find a generator g of G via a randomized algorithm which we
do not describe here. Let (G, q, g) be the output of GroupGen.

We now describe the El Gamal encryption scheme whose security is related to (but does
not follow from) the discrete logarithm assumption:

Key generation Gen(1k):
(G, q, g)← GroupGen(1k)
Choose x←

�
q; set y = gx

Output PK = (G, q, g, y) and SK = x

Encryption Epk(m) (where m ∈ G):
Pick r ←

�
q

Output 〈gr, yrm〉

Decryption Dsk(A,B) :
Compute m = B

Ax

Correctness of decryption follows from yrm
(gr)x = yrm

(gx)r = yrm
yr = m.

The discrete logarithm problem implies that no adversary can determine the secret
key given the public key (can you prove this?). However, this alone is not enough to
guarantee semantic security! In fact, we can show a particular group for which the discrete
logarithm assumption (DLA) is believed to hold, yet the El Gamal encryption scheme is
not semantically secure. Namely, consider groups

�
∗

p for p prime, as discussed earlier. We
noted that the DLA is believed to hold in groups of this form. However, it is also known
how to determine in polynomial time whether a given element of

�
∗

p is a quadratic residue
or not (an element y ∈

�
∗

p is a quadratic residue if there exists an x ∈
�
∗

p such that x2 = y).
Furthermore, a generator g of

�
∗

p cannot be a quadratic residue. These observations leads
to a direct attack on the El Gamal scheme (we sketch the attack here, but let the reader

4-5

fill in the details or refer to [1, Section 9.5.2]): output (m0,m1) such that m0 is a quadratic
residue but m1 is not. Given a ciphertext 〈A,B〉, where A = gr and B = yrmb for some r,
we can determine in polynomial time whether yr is a quadratic residue or not (for example,
if A or y are quadratic residues then at least one of r, x is even and thus yr = yxr is also a
quadratic residue). But then by looking at B we can determine whether mb is a quadratic
residue or not (e.g., if yr is a non-residue and B is a residue, then it must be the case that
mb was not a quadratic residue), and hence determine which message was encrypted.

Evidently, then, we need need a stronger assumption about GroupGen in order to prove
that El Gamal encryption is semantically secure.

3.3 The Decisional Diffie-Hellman (DDH) Assumption

Informally, the DDH assumption is that it is hard to distinguish between tuples of the
form (g, gx, gy , gxy) and (g, gx, gy, gz), where g is a generator and x, y, z are random. More
formally, GroupGen satisfies the DDH assumption if the DDH problem is hard for GroupGen,
where this is defined as follows:

Definition 3 The DDH problem is hard for GroupGen if the following distributions are
computationally indistinguishable (cf. the definition from Lecture 3):

{(G, q, g) ← GroupGen(1k);x, y, z ←
�

q : (G, q, g, gx, gy , gz)}

and
{(G, q, g) ← GroupGen(1k);x, y ←

�
q : (G, q, g, gx, gy, gxy)}.

♦

We call tuples chosen from the first distribution “random tuples” and tuples chosen from
the second distribution “DH tuples”. (Note that this is an abuse of terminology, since there
exist tuples in the support of both distributions. But when we say that ~g is a random tuple
we simply mean that ~g was drawn from the first distribution above.) Also, if the DDH
assumption holds for GroupGen and G is a particular group output by GroupGen then we
informally say that the DDH assumption holds in G.

Security of the El Gamal encryption scheme turns out to be equivalent to the DDH
assumption. We prove the more interesting direction in the following theorem.

Theorem 4 Under the DDH assumption, the El Gamal encryption scheme is secure in the
sense of indistinguishability.

Proof (Note: what we really mean here is that if the DDH assumption holds for GroupGen,
and this algorithm is used in the key generation phase of El Gamal encryption as described
above, then that particular instantiation of El Gamal encryption is secure.)

Assume a ppt adversary A attacking the El Gamal encryption scheme in the sense of
indistinguishability. Recall this means that A outputs messages (m0,m1), is given a random
encryption of mb for random b, and outputs guess b′. We will say that A succeeds if b′ = b
(and denote this event by Succ), and we are ultimately interested in PrA[Succ].

4-6

We construct an adversary A′ as follows:

A′(G, q, g1, g2, g3, g4)

PK = (g1, g2)
run A(PK) and get messages (m0,m1)
b← {0, 1}
C = 〈g3, g4mb〉
run A(PK,C) to obtain b′

output 1 iff b′ = b

Let Rand be the event that (g1, g2, g3, g4) are chosen from the distribution of random
tuples, and let DH be the event that they were chosen from the distribution on DH tuples.
Since the DDH assumption holds in G and A′ is a ppt algorithm we know that the following
is negligible:

∣

∣Pr[A′ = 1|DH]− Pr[A′ = 1|Rand]
∣

∣ .

Next, we claim that Pr[A′ = 1|DH] = PrA[Succ]. To see this, note that when DH occurs
we have g2 = gx

1 , g3 = gr
1, and g4 = gxr

1 = gr
2 for some x and r chosen at random. But

then the public key and the ciphertext are distributed exactly as they would be in a real
execution of the El Gamal encryption scheme, and since A′ outputs 1 iff A succeeds, the
claim follows.

To complete the proof, we show that Pr[A′ = 1|Rand] = 1/2 (do you see why this
completes the proof?). Here, we know that g4 is uniformly distributed in G independent
of g1, g2, or g3. In particular, then, the second component of the ciphertext given to A is
uniformly distributed in G independent of the message being encrypted (and, in particular,
independent of b). Thus, A′ has no information about b — even an all-powerful A cannot
predict b in this case with probability different from 1/2 (we assume that A must always
output some guess b′ ∈ {0, 1}). Since A′ outputs 1 iff A succeeds, we may conclude that
Pr[A′ = 1|Rand] = 1/2.

References

[1] M. Bellare and P. Rogaway. Introduction to Modern Cryptography. Notes available from
http://www-cse.ucsd.edu/users/mihir/cse207/classnotes.html.

[2] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory 31(4): 469–472 (1985).

4-7

