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1 Introduction

In the last set of lectures, we introduced definitions of adaptively-secure non-interactive zero
knowledge and semantically-secure encryption. Based on these, we presented a construction
of a public-key encryption scheme secure against non-adaptive chosen-ciphertext attacks
(CCA1). This encryption scheme was proposed by Naor and Yung in 1990 [3].

In this lecture, we complete the proof of non-adaptive chosen-ciphertext security for
the Naor-Yung construction from the previous lecture. Next, we show that the scheme is
not secure against adaptive chosen-ciphertext attacks by showing a counterexample; we
also examine where the proof breaks down. Then, we introduce the definition of a digital
signature scheme and the notion of security for a one-time strong signature scheme. Finally,
we present a public key encryption scheme secure against adaptive chosen-ciphertext attacks
(CCA2). This encryption scheme was constructed by Dolev, Dwork, and Naor in 1991 [1].

2 Naor-Yung Construction

The Naor-Yung construction relies on an underlying semantically-secure public-key encryp-
tion scheme (Gen, E ,D) and an adaptively-secure non-interactive zero-knowledge proof sys-
tem (P,V). Given these, the scheme is defined as follows:

Gen∗(1k): (pk1, sk1)← Gen(1k)
(pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r)
sk∗ = sk1

E∗(pk1,pk2,r)(m): pick w1, w2 ← {0, 1}
∗

c1 ← Epk1
(m;w1)

c2 ← Epk2
(m;w2)

Π← P (r, (c1, c2) , (m,w1, w2))
output (c1, c2,Π)

D∗
sk1

(c1, c2,Π): if V (r, (c1, c2) ,Π) = 0 then (Verify proof)

output ⊥
else

output Dsk1
(c1)
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2.1 CCA1-Security

Theorem 1 Assuming (Gen, E ,D) is a semantically-secure encryption scheme and (P,V) is
an adaptively-secure NIZK proof system, then (Gen∗, E∗,D∗) is secure against non-adaptive
chosen-ciphertext attacks.

Recall that in a CCA1 attack an adversary is given access to a decryption oracle before
choosing two messages. He does not, however, have access to this oracle after being pre-
sented the ciphertext (which he then has to use to guess which message was encrypted).
The formal definition is as follows:

Definition 1 An encryption scheme (Gen, E ,D) is secure against chosen-ciphertext attacks
(“CCA1-Secure”) if the following is negligible for all ppt algorithms A:

∣

∣

∣
Pr[(pk, sk)← Gen(1k); (m0,m1)← ADsk(·)(pk); b← {0, 1};

C ← Epk(mb); b′ ← A(pk,C) : b = b′]
∣

∣−
1

2
.

♦

We provide here the remainder of the proof of Theorem 1, noting where we left off last
lecture. Recall that the idea behind the proof is as follows. We construct a set of games that
differ slightly from each other. We show at each step, with the construction of each new
game, that the ability of the adversary to distinguish between the two games is negligible (or,
in other words, the games are computationally indistinguishable). Transitivity then implies
that the first and last games are indistinguishable. But the first game will correspond to
the view of an adversary when m0 is encrypted, while the final game will correspond to the
view of an adversary when m1 is encrypted; thus, this completes the proof.

For the six different games, informal descriptions are as follows:

• Game 0: This is the real game, with the adversary getting an encryption of m0.

• Game 1: Like Game 0 except that instead of (P,V), its simulator is used to provide
the proof Π.

• Game 2: Like Game 1 except that c2 is computed as an encryption of m1.

• Game 2′: Like Game 2 except use sk2 to decrypt instead of sk1.

• Game 3: Like Game 2′ except that c1 is computed as an encryption of m1.

• Game 3′ Like Game 3 except use sk1 to decrypt instead of sk2.

• Game 4: Like Game 3′ except use (P,V) to provide the proof Π.

Note that Game 4 corresponds exactly to the real game when the adversary gets an encryp-
tion of m1.
Proof of Theorem 1: We first considered the following two games. In each game the
adversary is given a pk based on two valid runs of Gen along with a value r. The adversary,
with the help of a decryption oracle, then outputs two messages and has to guess which
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of those messages was encrypted. The only difference between the two games is that in
Game 1 the values for r and Π come from a simulator (and are not a true random string
and a real proof, respectively). However, we claim that the probability of the adversary’s
guess being b′ = 0 is the essentially same in each case (i.e., only negligibly different).

Game 0 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m0;w2)

Π← P (r, (c1, c2) , (m,w1, w2))

b← A(c1, c2,Π)

Game 1 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← Sim1(1
k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m0;w2)

Π← Sim2(c1, c2)

b← A(c1, c2,Π)

Claim 2 Let Pr0[·] and Pr1[·] represent the probability of event · in games 0 and 1 respec-
tively. Then |Pr0[b = 0]− Pr1[b = 0]| is negligible.

Proof Summary from last time. To show that the adversary’s choice is not affected by
the use of a simulator, the only change from Game 0 to Game 1, we showed that if such
a difference could be detected by the adversary then the adversary could be used by an-
other adversary, A′, to distinguish real proofs from simulated proofs. Using the adversary
who can distinguish between games 0 and 1, A′ can easily simulate the decryption ora-
cle, obtain messages to encrypt and pass on for a proof, and give the proof to A along
with valid ciphertext. The advantage of A′ in distinguishing real/simulated proofs is then
|Pr0[b = 0]− Pr1[b = 0]|, which is negligible by the security of (P,V) as an adaptively-secure
NIZK proof system.

We then made a change to Game 1, where we encrypt message m1 to get c2, and called this
Game 2.

Game 2 :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m1;w2)

Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Claim 3 Let Pr1[·] and Pr2[·] represent the probability of event · in games 1 and 2 respec-
tively. Then |Pr1[b = 0]− Pr2[b = 0]| is negligible.

Proof Summary from last time. As with the previous claim, we wish to show that the
existence of an adversary who can distinguish between the two games is an impossibility.
This time, instead of the zero-knowledge property, we attacked the semantic security of the
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underlying encryption scheme. Specifically, we constructed an adversary A ′ who wishes to
guess which of two messages he generated was encrypted with a given key. To achieve his
goal, A′ uses the adversary who can distinguish between games 1 and 2 to pick two messages.
A′ passes these on directly and then gets back an encrypted message that is either m0 or
m1. Giving this to A as c2 (note that A′ has no problem running the simulator), we see
that the advantage of A′ is exactly |Pr1[b = 0]− Pr2[b = 0]|. And this must be negligible
by semantic security of the underlying encryption scheme.

We next defined an event Fake as the event that A submits (c1, c2,Π) to the decryption
oracle with Dsk1

(c1) 6= Dsk2
(c2), but V(r, (c1, c2),Π) = 1. This represents the event where

the adversary is able to trick the verifier into returning true on a bad pair of ciphertexts
(i.e., a pair not in the language). We continued with the claim that the probability of Fake

occurring in Game 2 is negligible.

Claim 4 Pr2[Fake] is negligible.

Proof Since Fake has to do with the use of the decryption oracle, we note that the only
important event from A’s perspective at the point he uses the oracle is the generation of pk∗.
Furthermore, we note that pk∗ is created identically in games 1 and 2. Therefore Pr1[Fake] =
Pr2[Fake]. Last time, we went on to show that |Pr1[Fake]− Pr0[Fake]| is negligible by the
zero-knowledge property of the proof system and that Pr0[Fake] is negligible because of the
soundness of the proof system. Therefore Pr2[Fake] is negligible.

At this point, we continue our proof from last time (and begin the new material from
this lecture). The proof continues by constructing another game, Game 2′, which is the
same as Game 2 except we use sk2 to decrypt instead of sk1 (in the obvious way).

Game 2’ :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r← Sim1(1

k)

pk∗ = (pk1, pk2, r); sk∗ = sk2

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m0;w1); c2 ← Epk2

(m1;w2)
Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Corollary 5 |Pr2′ [b = 0]− Pr2[b = 0]| is negligible.

Proof From an adversary’s point of view, a difference between Game 2 and Game 2 ′ occurs
only if the event Fake occurs. This is because, as long as both c1 and c2 are encryptions of
the same message, decryption using sk1 or sk2 will make no difference. It is not hard to see
that Pr2[Fake] = Pr2′ [Fake]. Since in either game the event Fake occurs with only negligible
probability, the corollary follows.

We now modify Game 2′, encrypting m1 for both c1 and c2, and call this Game 3.
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Game 3 :
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk2

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m1;w1) ; c2 ← Epk2

(m1;w2)

Π← Sim2(c1, c2)
b← A(c1, c2,Π)

Claim 6 |Pr3[b = 0]− Pr2′ [b = 0]| is negligible.

Proof We note that the argument used in this proof is similar to the one used in between
games 1 and 2. Assume that there exists a ppt adversary A such that |Pr3[b = 0] −
Pr2′ [b = 0]| is NOT negligible. We can then construct an adversary A′(pk1) which breaks
the semantic security of the underlying encryption scheme, thus generating a contradiction,
as follows:

A′(pk1) :

(pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r); sk∗ = sk2

Run ADsk∗(·)(pk) until it outputs (m0,m1)
Query Epk1,b(m0,m1) to get c1

c2 ← Epk2
(m1)

Π← Sim2(c1, c2)
Output A(c1, c2,Π)

Note that A′(pk1) is ppt because A is ppt. Also, it is possible for A′ to simulate the
decryption oracle for A: A′ can decrypt using sk2 since (pk2, sk2) is generated locally by
A′. Next, we can see that if c1 = Epk1

(m0), then this becomes equivalent to Game 2’; if
c1 = Epk1

(m1), then this becomes equivalent to Game 3. So, A′ distinguishes encryptions
of m0 from encryptions of m1 with probability |Pr3[b = 0] − Pr2′ [b = 0]|, which must be
negligible by semantic security of the underlying encryption scheme.

We next imagine a game Game 3′ in which we revert back to using sk1 to decrypt rather
than sk2. As in the proof of indistinguishability between Game 2 and Game 2′, it is not
hard to see that Game 3′ is indistinguishable from Game 3.

We next construct another game, Game 4, in which we switch back to real proofs from
simulated proofs.
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Game 4 :
(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r); sk∗ = sk1

(m0,m1)← ADsk∗(·)(pk)

w1, w2 ← {0, 1}
poly(k)

c1 ← Epk1
(m1;w1); c2 ← Epk2

(m1;w2)

Π← P(r, (c1 , c2), (w1, w2))

b← A(c1, c2,Π)

So, Game 4 is basically the actual situation where the adversary gets a real encryption of
m1 along with a real proof.

Claim 7 |Pr4[b = 0]− Pr3[b = 0]| is negligible

Proof The proof is exactly analogous to that used in studying the transition from Game 0
to Game 1. As there, if an adversary could distinguish between the two games, it could be
used by another adversary to distinguish real from simulated proofs. However, this violates
the (adaptive) zero-knowledge property of the underlying proof system.

From the sequence of preceding claims, we can conclude that |Pr4[b = 0] − Pr0[b = 0]|
is negligible. But since the final game is just the real game when the adversary gets an
encryption of m1, and the original game is just the real game when the adversary gets an
encryption of m0, we see that we have proved that (Gen∗, E∗,D∗) is secure against non-
adaptive chosen-ciphertext attacks.

2.2 CCA2-Security

In this section, we will examine why the Naor-Yung construction is not secure against
adaptive chosen-ciphertext attacks by giving a counter-example. Recall the formal definition
of such attacks:

Definition 2 An encryption scheme (Gen, E ,D) is secure against adaptive chosen-ciphertext
attacks (“CCA2-Secure”) if the following is negligible for all ppt algorithms A:

∣

∣

∣
Pr[(pk, sk)← Gen(1k); (m0,m1)← ADsk(·)(pk); b← {0, 1};

C ← Epk(mb); b′ ← ADsk(·)(pk,C) : b = b′]
∣

∣

∣
−

1

2
,

where A cannot query Dsk(C). ♦

Theorem 8 The Naor-Yung scheme (Gen∗, E∗,D∗) is not secure against adaptive chosen-
ciphertext attacks (in general). More precisely, for any semantically-secure encryption
scheme (Gen, E ,D) there exists an adaptively-secure NIZK proof system (P,V) such that
the resulting Naor-Yung construction is demonstrably insecure against adaptive chosen-
ciphertext attacks.
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Proof Let (P ′,V ′) be any adaptively-secure NIZK proof system. Define the proof system
(P,V) as follows:

P(r, (c1, c2), (w1, w2)) :

Output P ′(r, (c1, c2), (w1, w2))|0

V(r, (c1, c2),Π|b) :

Output V ′(r, (c1, c2),Π)

I.e., we introduce a spurious bit in P and have V ignore it. (here, “|” denotes concatenation).
It is not hard to show that (P,V) is also an adaptively-secure NIZK proof system. However,
if this new proof system is used in the Naor-Yung construction we can construct an adversary
A (making a CCA2 attack) which breaks the encryption as follows:

A(pk) :

Output (m0,m1)
Get back (c1, c2,Π|0)
Submit (c1, c2,Π|1) to the decryption oracle
Get back mb

The adversary just modifies the last bit of the challenged ciphertext and submits it to the
decryption oracle (note that this is allowed under the definition of CCA2 security). By this
method, the adversary will get back the actual message as the last bit was just a spurious
bit. So, this construction is not secure against adaptive chosen-ciphertext attacks.

If we examine the proof of security for the Naor-Yung construction and try to analyze
where it breaks down in this case, we see that the Pr2[Fake] is no longer negligible. This is
because, if the adversary gets a fake proof (say, (c1, c2,Π|0)), he can construct another fake
proof by changing just the last bit (i.e., (c1, c2,Π|1)).

We mention in passing that one fix this problem by constructing a proof system satisfying
a stronger notion of security: namely, that even when an adversary is given a fake proof,
it should be unable to construct a different fake proof. See [4, 2] for work along this line.
Here, however, we discuss a different method which was historically first.

3 Signature Schemes

For the construction that follows, we will need to notion of a digital signature scheme. Of
course, such schemes are also very useful in their own right, and maybe we will return to
them later in the course.

Definition 3 A signature scheme (over some message spaceM) is a triple of ppt algorithms
(SigGen,Sign,Verify) such that:

1. SigGen is a randomized algorithm which outputs a verification key vk and a secret
key sk (denoted by (vk, sk)← SigGen(1k)).

2. Sign is a (possibly) randomized algorithm which takes a secret key sk and a message
m ∈M and outputs a signature σ (denoted by σ ← Signsk(m)).
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3. Verify is a deterministic algorithm which takes a verification key vk, a message m ∈M,
and a signature σ and outputs 1 or 0 (denoted by Verifyvk(m,σ)). A 1 indicates that
the signature is valid and a 0 indicates that the signature is invalid.

We require that for all k, for all (vk, sk) output by SigGen(1k), and for all m ∈M we have
Verifyvk(m,Signsk(m)) = 1. ♦

The above merely defines the semantics of signing, but does not give any notion of
security. Many such definitions are possible, but we will only require a fairly weak definition
of security for the present application (note that this definition of security is too weak for
signature schemes used to sign, say, documents).

Definition 4 A signature scheme (SigGen,Sign,Verify) is a one-time, strong signature
scheme if the following is negligible for all ppt adversaries A:

Pr

[

(vk, sk)← SigGen(1k);m← A (vk) ;σ ← Signsk(m);
(m′, σ′)← A (vk, σ) : Verifyvk (m′, σ′) = 1 ∧ (m′, σ′) 6= (m,σ)

]

.

♦

What this means is that, given a signature of a message he chooses, an adversary cannot
forge a signature for a different message without knowledge of the secret key. (Also, the
adversary cannot even forge a different signature on the same message.) While we do
not prove it here, it is known that one-time, strong signature schemes exist assuming the
existence of one-way functions.

Theorem 9 If one-way functions exist then one-time, strong signature schemes exist.

4 Dolev-Dwork-Naor Construction

Danny Dolev, Cynthia Dwork, and Moni Naor [1] constructed an encryption scheme secure
against adaptive chosen-ciphertext attacks beginning from any underlying semantically-
secure scheme, a one-time, strong signature scheme, and an adaptively-secure NIZK proof
system. Their construction is discussed in this section.

Let (Gen, E ,D) be a semantically secure encryption scheme. We construct a new en-
cryption scheme (Gen′, E ′,D′) as follows:
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Gen′(1k): r← {0, 1}poly(k)

for i = 1 to k

for b = 0 to 1
(pki,b, ski,b)← Gen(1k) (Generate 2k pairs of keys)

pk =

(

pk1,0 pk2,0 . . . pkk,0

pk1,1 pk2,1 . . . pkk,1

)

, r

sk =

(

sk1,0 sk2,0 . . . skk,0

sk1,1 sk2,1 . . . skk,1

)

E ′pk(m): (vk, sk)← SigGen(1k)
Let vk = v1|v2| · · · |vk be the binary representation of vk

(we assume for simplicity that |vk| = k)
for i = 1 to k

wi ← {0, 1}
∗; ci ← Epki,vi

(m;wi)

Π← P(r, ~C, (m, ~w))
(this is a proof that all ciphertexts correspond to same message)

σ ← Signsk( ~C|Π)

output vk, ~C,Π, σ

D′
sk(vk, ~C,Π, σ): if Verifyvk( ~C|Π, σ) = 0 (Verify signature)

output ⊥
else

if V(r, ~C,Π) = 0 (Verify proof)
output ⊥

else
output Dsk1,v1

(c1)

Note that the attack we showed on the Naor-Yung scheme fails here since the attack would
require an adversary to forge a signature with respect to vk (which is infeasible). Of course,
we need a formal proof to show that the scheme resists all adaptive chosen-ciphertext
attacks.

Theorem 10 Assuming (Gen, E ,D) is a semantically secure encryption scheme, (P,V) is
an adaptively-secure NIZK proof system, and a one-time, strong signature scheme is used,
then (Gen′, E ′,D′) is secure against adaptive chosen-ciphertext attacks.

Proof The proof uses the same structure as that of the Naor-Yung construction. We have
a ppt adversary A making an adaptive chosen-ciphertext attack on the encryption scheme.
We show that the probability that the adversary will succeed is negligible by constructing a
series of games and showing that they are all computationally indistinguishable. We begin
by defining our original game, which corresponds to the real encryption scheme when the
adversary gets an encryption of m0:
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Game 0 :
{(pki,b, ski,b)}1≤i≤k;b∈{0,1} ← Gen(1k)

r ← {0, 1}poly(k)

pk = {pki,b}1≤i≤k;b∈{0,1}, r; sk = {ski,b}1≤i≤k;b∈{0,1}

(m0,m1)← AD′

sk
(·)(pk)

(vk, sk)← SigGen(1k)
for i = 1 to k

ci ← Epki,vi
(m0)

Π← P(r, ~C, (m0, ~w))

σ ← Signsk( ~C|Π)

b← AD′

sk
(·)(vk, ~C,Π, σ)

We begin by stating a technical lemma. Let Forge be the event that A submits a ciphertext
(vk′, ~C ′,Π′, σ′) to the decryption oracle with:

• vk′ = vk

• ( ~C ′,Π′, σ′) 6= ( ~C,Π, σ)

• Verifyvk( ~C ′|Π′, σ′) = 1

Claim 11 Pr0[Forge] is negligible.

This follows from the 1-time strong security of the signature scheme. Details omitted.
The proof of security for the Dolev-Dwork-Naor scheme will be completed in the follow-

ing lecture.
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