
CMSC 858K — Advanced Topics in Cryptography February 19, 2004

Lecture 8

Lecturer: Jonathan Katz Scribe(s):

Alvaro A. Cardenas
Nicholas Sze
Yinian Mao
Kavitha Swaminathan

1 Introduction

Last time we introduced the Naor-Yung construction of a CCA1-secure cryptosystem, and
gave a proof of security. We also gave the construction of a CCA2-secure cryptosystem by
Dolev-Dwork-Naor. Here, we complete the proof that this cryptosystem is indeed CCA2
secure.

2 The Dolev-Dwork-Naor (DDN) Scheme [1]

Given a public-key encryption scheme (Gen′, E ′,D′), an adaptively-secure NIZK proof sys-
tem (P,V), and a (strong, one-time) signature scheme (SigGen,Sign,Vrfy), the DDN encryp-
tion scheme is constructed as follows (in the following, poly(k) represents some unspecified
polynomial which is not necessarily always the same):

• Gen(1k):
for i = 1 to k do (pki,0, ski,0)← Gen′(1k), (pki,1, ski,1)← Gen′(1k)
Select a random r: r ← {0, 1}poly(k)

Output pk∗ =

[

pk1,0 pk2,0 · · · pkk,0

pk1,1 pk2,1 · · · pkk,1

]

, r

and sk∗ =

[

sk1,0 sk2,0 · · · skk,0

sk1,1 sk2,1 · · · skk,1

]

(in fact, we may simplify things and let sk∗ = (sk1,0, sk1,1); see below).

• Epk∗(m):
(vk, sk)← SigGen(1k)
view vk as a sequence of k bits1; i.e., vk = vk1|vk2| · · · |vkk

for i = 1 to k: wi ← {0, 1}
poly(k); ci ← E

′

pki,vki
(m;wi)

π ← P(r,~c, ~w)
σ ← Signsk(~c|π)
Output (vk,~c, π, σ)

• Dsk∗(vk,~c, π, σ):
If Vrfyvk(~c|π, σ) = 0 then output ⊥
If V(r,~c, π) = 0 then output ⊥
Else output D′

sk1,vk1

(c1)

1The scheme can be modified in the obvious way for vk of arbitrary (polynomial) length.

8-1

Theorem 1 The encryption scheme presented above is CCA2 secure if (Gen ′, E ′,D′) is se-
mantically secure, (P,V) is an adaptively-secure NIZK proof system, and (SigGen,Sign,Vrfy)
is a strong, one-time signature scheme.

Proof Consider an arbitrary ppt adversary A with adaptive access to a decryption oracle.
We will use a sequence of games in which the first game will correspond to a real encryption
of m0, the final game will correspond to a real encryption of m1 (here, m0,m1 are the
messages output by A), and in each stage along the way we show that the difference in
the adversary’s probability of outputting “1” is negligible. This then implies that the
difference between the probability that it outputs 1 when it gets an encryption of m0 and
the probability it outputs 1 when it gets an encryption of m1 is also negligible, and that is
exactly the definition of CCA2 security.

Game 0 is the encryption of m0 using the real cryptosystem:

Game 0: Stage 1 {(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, . . . , k and b = 0, 1

r ← {0, 1}poly(k)

(pk∗, sk∗) = (({pki,b} , r) , {ski,b})

(m0,m1) ← ADsk∗(·)(pk∗)

Stage 2 (vk, sk) ← SigGen(1k)

wi ← {0, 1}poly(k), for i = 1, 2, · · · , k (from now on
we let this step be implicit)

ci ← E ′pki,vki
(m0;wi), for i = 1, 2, · · · , k

π ← P(r,~c, ~w)
σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)

Then, we modify Game 0 by simulating r and π to obtain Game 1. Simulator Sim1

generates r and simulator Sim2 outputs π without any witness.

Game 1: Stage 1 {(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, · · · , k and b = 0, 1

r ← Sim1(1
k)

(pk∗, sk∗) = (({pki,b} , r) , {ski,b})

(m0,m1) ← ADsk∗(·)(pk∗)

Stage 2 (vk, sk) ← SigGen(1k)

ci ← E ′pki,vki
(m0;wi), for i = 1, 2, · · · , k

π ← Sim2(~c)

σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)

Claim 2 Let Pri[·] denote the probability of a given event in game i. Then for any ppt A
the following is negligible: |Pr0[b

∗ = 1]− Pr1[b
∗ = 1].|

8-2

Sketch of Proof (Informal) The validity of this claim is intuitively clear as if the prob-
abilities are substantially different then A can be used as a distinguisher between a real
NIZK proof and a simulated proof. distinguish a simulated proof from a real proof. We
provide more details now.

Given a ppt adversary A, construct the following ppt adversary A′ (adversary A′ will
attempt to distinguish between real/simulated proofs):

A′(r): // r is either a truly random string or a string output by Sim1

{(pki,b, ski,b)} ← Gen′(1k), for i = 1, 2, · · · , k and b = 0, 1
pk∗ = ({pki,b} , r)
(m0,m1)← A(pk∗)
(vk, sk)← SigGen(1k)
∀i ci ← E

′
pki,,vki

(m0;wi)

Output (~c, ~w)
get π //π is either a real proof or a simulated proof
σ ← Signsk(~c|π)

b∗ ← ADsk∗(·)(pk∗, vk,~c, π, σ)
Output b∗

Note that A′ has no problems simulating the decryption oracle for A, since it has all
necessary secret keys. If (r, π) are a real string/proof, then A is interacting in Game 0 and
so the probability that A′ outputs 1 is the probability that A outputs 1 in Game 0. On the
other hand, if (r, π) are a simulated string/proof, then A is interacting in Game 1 and so
the probability that A′ outputs 1 is the probability that A outputs 1 in Game 1. Since the
NIZK proof system is adaptively-secure, we must have |Pr0[b

∗ = 1]− Pr1[b
∗ = 1].|.

We construct Game 1′ as Game 1 except that if A ever makes valid decryption oracle
query using vk (where vk is the verification key used to construct the challenge ciphertext),
then we simply return ⊥ in response to this query. We claim that |Pr1′ [b

∗ = 1]−Pr1[b
∗ = 1]|

is negligible. Note that the only difference between the games occurs if A is able to forge
a new, valid signature with respect to vk (since ciphertexts submitted to the decryption
oracle must be different from the challenge ciphertext, and since ciphertexts are only valid
if the signature verifies correctly); furthermore, the security of the signature scheme ensures
that this event occurs with only negligible probability. Details omitted.

We construct a new game, Game 1′′, which is the same as Game 1′ except that instead
of using sk1,vk′

1
to decrypt a ciphertext (vk′, ~c′, π′, σ′) (i.e., to answer decryption oracle

queries for this ciphertext), we look for the first bit position i where vk and vk ′ differ2 (i.e.,
vki 6= vk′

i) and use key ski,vk′

i
to decrypt. I.e., the decryption oracle now works as follows:

D′′

sk∗(vk′, ~c′, π′, σ′) =

⊥ if vk′ = vk;

⊥ if Vrfyvk′(~c′|π′, σ′) = 0 or V(r, ~c′, π′) = 0;
D′

ski,vk′
i

(c′i) otherwise (where i is as discussed above)
.

Claim 3 For any ppt A the following is negligible: |Pr1′′ [b
∗ = 1]− Pr1′ [b

∗ = 1]|.

2Here, vk is again the verification key used for the challenge ciphertext; note that there must be a bit
position where they differ since if vk = vk

′ we abort anyway.

8-3

Sketch of Proof (Informal) In a given query to the decryption oracle, if all ciphertexts
decrypt to the same thing then it doesn’t really matter what secret key we use. The
only difference between Game 1′′ and Game 1′ occurs if the adversary queries a vector of
ciphertexts ~c′ where different ciphertexts decrypt to different messages. So the only possible
way to distinguish between Game 1 and Game 1′ is if a decryption query is ever made for
which there exists two different indices i and j where the decryption of c′i is not equal to

the decryption of c′j and yet the proof is valid (i.e., V (r, ~c′, π′) = 1). We argue that this
event occurs with negligible probability.

Let Fake be the event that A requests a decryption query (vk ′, ~c′, π′, σ′) s.t. π′ is a
valid proof and ∃i, j s.t. D′

ski,vk′
i

(ci) 6= D
′
skj,vk′

j

(cj). Note that Pr1′′ [Fake]] = Pr1′ [Fake]

(since there is no difference between the games until Fake occurs). Furthermore, we claim
that |Pr1′ [Fake]−Pr1[Fake]| is negligible. This is so because (as before) the only difference
between these games occurs if the adversary forges a signature using vk, which happens
with only negligible probability. We also claim that |Pr1[Fake] − Pr0[Fake]| is negligible,
since otherwise we can construct an adversary A′ distinguishing real from simulated proofs,
similar to the proof of Claim 1 (it is essential here that A′ knows all secret keys, so can
check when event Fake occurs). Finally, note that Pr0[Fake] is negligible by the (adaptive)
soundness of the NIZK proof system. We conclude that Pr1′′ [Fake] is negligible, and this is
sufficient to complete the proof of the claim.

We construct Game 2 which is the same as Game 1′′ except that we form the challenge
ciphertext by encrypting (k copies of) m1 instead of m0. I.e., for all i: we compute ci ←
E ′pki,vki

(m1)

Claim 4 For any ppt A the following is negligible: |Pr2[b
∗ = 1]− Pr1′′ [b

∗ = 1]|.

Sketch of Proof (Informal) If A can distinguish between these two games we construct an
adversary A′ attacking the semantic security of the underlying encryption scheme. Actually,
instead of attacking a single instance of the encryption scheme it will attack k instances of
the encryption scheme; i.e., it gets k independently-generated public keys, outputs m0,m1,
gets back either an encryption of m0 (with respect to all k keys) or an encryption of m1, and
then has to guess which is the case. Note, however, that by a standard hybrid argument the
semantic security of a single instance implies the semantic security of poly-many instances.

We construct our A′ as follows:

A′(pk1, · · · , pkk) :

(vk, sk)← SigGen(1k)
{(pk′

i, sk
′

i)} ← Gen′(1k), for i = 1, 2, · · · , k
r ← Sim1(1

k)

pk∗ = ({pki,b} , r), where pki,b =

{

pki if b = vki

pk′

i otherwise

(m0,m1)← AD
∗(·)(pk∗)

Output (m0,m1), get back ~c
π ← Sim2(~c)
σ ← Signsk(~c|π)

Output whateverAD
∗(·)(vk,~c, π, σ) outputs

8-4

It is crucial to note here that A′ can simulate the decryption oracle D∗ — in particular,
for any ciphertext (vk′, ~c′, π′, σ′) submitted by A, if vk′ = vk then A′ just returns ⊥ (as
in the previous game), whereas if vk ′ 6= vk then there is a bit i where they differ (i.e.,
vk′

i 6= vki) and A′ can use the secret key ski,vk′

i
= sk′

i (which is knows!) to decrypt.
This is by construction: A′ knows exactly half the secret keys (i.e., those in positions not
overlapping with vk) and can use those to decrypt.

Notice that if ~c is an encryption of m1 then A is essentially interacting in Game 2,
whereas if it is an encryption of m0 then A is in Game 1′′. So, if A can distinguish between
Game 1” and Game 2 then A′ can distinguish the encryptions and break the semantic
security of the underlying encryption scheme.

Let Game 3 correspond to an encryption of m1 in the real encryption scheme. We jump
ahead and claim the following:

Claim 5 For any ppt A, the following is negligible: |Pr3[b
∗ = 1]− Pr2[b

∗ = 1]|.

Sketch of Proof (Informal) Technically, the proof would proceed by a sequence of games
exactly analogous to games 1, 1′, and 1′′ that we introduced previously. In particular, we
would first revert back to decrypting using either sk1,0 or sk1,1; would then revert back to
decrypting even if vk′ = vk; and, finally, would go back to using a real random string/proof
rather than simulated ones. Because these games (and the proofs that they all do not affect
the probability that b∗ = 1 by more than a negligible amount) are essentially the same as
before, we do not repeat the arguments here.

The above sequence of claims implies (by multiple applications of the triangle inequality)
that |Pr0[b

∗ = 1] − Pr3[b
∗ = 1]| is negligible; this is exactly equivalent to saying that the

scheme is secure against adaptive chosen-ciphertext attacks.

3 Summary

We give a definition of a one-way function.

Definition 1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if the following hold:

1. f(x) is computable in time polynomial in |x|.

2. For all ppt algorithms A, the following is negligible (in k):

Pr[x← {0, 1}k ; y = f(x);x′ ← A(y) : f(x′) = y].

♦ It is not hard to show that if a one-way function exists, then P 6= NP . The converse

(i.e., whether P 6= NP implies the existence one-way functions), is not known to hold.
Since the existence of semantically-secure public-key encryption schemes implies the

existence of one-way functions3, which furthermore implies the existence of one-time strong
signature schemes, we may restate the result of the previous section as follows:

3Prove it as an exercise!

8-5

Theorem 6 If there exists a semantically-secure public-key encryption scheme and an
adaptively-secure NIZK proof system, then there exists a CCA2-secure encryption scheme.

Later in the course, we will show:

Theorem 7 If there exist trapdoor permutations, then there exists an adaptively-secure
NIZK proof system.

We have shown in a previous lecture that the existence of trapdoor permutations implies the
existence of semantically-secure public-key encryption. The gives the following corollary:

Corollary 8 If there exist trapdoor permutations, then there exists a CCA2-secure encryp-
tion scheme.

The following important question is still open:

Does semantically-secure public-key encryption imply CCA2-secure public-key
encryption?

In particular, can we construct adaptively-secure NIZK proof systems based on semantically-
secure public-key encryption? Note that these questions are especially interesting since we
do have examples of public-key encryption schemes which are not based (or, at least, so
not seem to be based) on trapdoor permutations; El Gamal encryption is probably the
best-known example.

References

[1] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd ACM Sympo-
sium on the Theory of Computing, pages 543-552, 1991.

[2] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In 22nd ACM Symposium on the Theory of Computing, pages 427-
437, 1990

8-6

