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1 Introduction

In previous lectures, we constructed public-key encryption schemes which were provably
secure against non-adaptive chosen-ciphertext (CCA-1) attacks, and also adaptive chosen-
ciphertext (CCA-2) attacks. However, both constructions used generic non-interactive zero-
knowledge proof systems which — although poly-time — are not very efficient (as we will
see later in the course). Therefore, the constructions are not very practical.

In 1998, Cramer and Shoup proposed an encryption scheme [1] which was provably
secure against adaptive chosen-ciphertext attacks and was also practical. The proof of
security relies on the hardness of the Decisional Diffie-Hellman (DDH) problem in some
underlying group.

In this lecture, we will first review the Decisional Diffie-Hellman assumption and the
El-Gamal cryptosystem. Then we will modify the El-Gamal encryption scheme to construct
a scheme secure against non-adaptive chosen-ciphertext attacks. This will be a step toward
the full Cramer-Shoup cryptosystem, which we will cover in later lectures.

2 Background

The Cramer-Shoup cryptosystem relies on the DDH assumption in some finite group. In
Lecture 4, we defined the Discrete Logarithm (DL) problem and DDH problem; we review
them here. Let G be a finite cyclic group of prime order q, and let g ∈ G be a generator.
Given h ∈ G, the discrete logarithm problem requires us to compute x ∈

�
q such that

gx = h. We denote this (unique) x by logg h. In particular groups G and for q large, it is
assumed hard to compute x (this was formalized in Lecture 4).

A stronger assumption is the Decisional Diffie-Hellman (DDH) assumption. Here, given
G, a generator g of G, and three elements a, b, c ∈ G, we are asked (informally) to decide
whether there exist x, y such that a = gx, b = gy and c = gxy. More formally, the DDH as-
sumption states that the following two distributions are computationally indistinguishable:

• {G, g, gx, gy , gxy}

• {G, g, gx, gy , gz}

where g is a generator of G and x, y, z are chosen at random from
�

q . (Again, see Lecture
4 for more formal definitions.)
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Clearly, the DDH assumption implies the DL assumption. In fact, it appears to be
considerably stronger. In particular, there are groups where DDH is false, but DL is still
believed to hold. For example1, let G =

�
∗
p for a prime p. On the one hand, the DL

problem is believed to be hard in this group. Yet given ga, gb (for generator g) one can
easily deduce the Legendre symbol of gab (which we denote by L(gab)). This observation
gives an immediate method for distinguishing {G, g, gx, gy , gxy} and {G, g, gx, gy, gz} with
non-negligible probability; namely, guess “DDH tuple” iff L(gz) = L(gxy).

A group in which DDH is assumed to hold is the following: Let p = 2q+1 where p, q are
both prime. Let G be the subgroup of quadratic residues in

�
∗
p. Then G is a cyclic group of

prime order q in which the DDH assumption is believed to hold.

The El-Gamal cryptosystem. In Lecture 4, we introduced the El-Gamal encryption
scheme and proved that it was semantically secure under the DDH assumption; it may
be useful to review that proof before continuing. We recall the scheme now (here, g is a
generator of a group G):

KeyGen(1k): x←
�

q

y = gx

PK = 〈g, y〉
SK = 〈x〉

EPK(m): r ← {0, 1}k

output 〈gr, yr ·m〉

DSK(u, v): output v
ux

Correctness: Assuming an honest execution of the protocol, we have

v

ux
=

yr ·m

(gr)x
=

(gx)r ·m

(gr)x
= m.

3 Modifying El-Gamal

To build up to the Cramer-Shoup scheme, we first modify the El-Gamal encryption scheme
and prove that the modified scheme is semantically secure under the DDH assumption.
Although we achieve the same result, we introduce the modified scheme because the proof
technique used to prove the modified scheme secure is different than that used to prove
security of the El Gamal scheme in Lecture 4. The same sort of techniques will later be
used to analyze the Cramer-Shoup scheme.

Consider the following scheme, where g1, g2 are two randomly-chosen generators in G:

KeyGen(1k): x, y ←
�

q

h = gx
1gy

2

PK = 〈g1, g2, h〉
SK = 〈x, y〉

1Note that in this example, the order of G is not prime. However, all groups we use in our constructions

will have prime order.
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EPK(m): r ←
�

q

output 〈gr
1, gr

2, hr ·m〉

DSK(u, v, e): output e
uxvy

Correctness: Assuming an honest execution of the protocol, we have

e

uxvy
=

hrm

(gr
1)

x(gr
2)

y
=

hrm

(gx
1 gy

2)r
= m.

Theorem 1 The above encryption scheme is semantically secure, assuming the DDH as-
sumption in G.

Proof We prove security of this scheme by a reduction to the DDH problem. Suppose a
ppt algorithm A can break the semantic security of the modified scheme. We then construct
a ppt adversary Â that can break the DDH problem by distinguishing a DDH tuple from
a random tuple. Thus by contradiction, the security of the new scheme is proved.

The input to algorithm Â is (g1, g2, g3, g4), which is either a DDH tuple or a random
tuple. The algorithm Â runs the following experiment.

Â(g1, g2, g3, g4)

x, y ←
�

q

h = gx
1 gy

2

PK = 〈g1, g2, h〉
(m0,m1)← A(PK)
b← {0, 1}
C = 〈g3, g4, gx

3 gy
4 ·mb〉

b′ ← A(PK,C)
if b = b′, then guess “DDH tuple”
else guess “random tuple”

Claim 2 If adversary Â gets a DDH tuple, then A’s view of the game is the same as in an
execution of the real encryption scheme.

Assume Â gets a DH tuple. Then there exist α, r ∈
�

q, such that:

〈g1, g2 = gα
1 , g3 = gr

1, g4 = gαr
1 = gr

2〉.

Therefore, the constructed public key and ciphertext have the following forms:

PK = 〈g1, g2, h = gx
1 gy

2〉 and C = 〈gr
1, gr

2, (gr
1)

x (gr
2)

y ·mb〉 = 〈g
r
1, gr

2, hr ·mb〉 .

Thus, the distribution of the public key and the ciphertext correspond exactly to A’s view
in the real world. (It should be noted that this occurs even though Â does not know nor
use the value of r.)

Note that the claim implies:

Pr[Â outputs “DDH tuple” | DDH tuple] = Pr[b′ = b | A attacks real encryption scheme].
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Claim 3 If adversary Â gets a random tuple, then (with all but negligible probability) even
an all-powerful A has no information about the bit b chosen by Â. In other words, b is
information-theoretically hidden from A with all but negligible probability.

An immediate corollary is that the probability that A correctly guesses b must be negligibly
close to 1/2 in this case (note that this holds even if A is all powerful). We continue with
the proof of the claim.

Assume Â gets a random tuple. Then there exist α, r, β chosen uniformly from
�

q such
that (g1, g2, g3, g4) have the following form:

〈g1, g2 = gα
1 , g3 = gr

1, g4 = gβ
1 〉.

Note that with all but negligible probability, β 6= αr (mod q) and α 6= 0. This is because,
for example, β = αr with probability 1/q, and q is exponentially large. From now on, we
simply assume that these hold. Re-writing, this means that there exist r, r ′ ∈

�
q with r 6= r′

such that g3 = gr
1 and g4 = gr′

2 . We now look at A’s information about x and y. Given the
public key PK = 〈g1, g2, h〉, note that there are exactly q possible pairs (x, y) that could
have been chosen by A. This is because h satisfies h = gx

1 gy
2 , and hence x and y satisfy

logg1
h = x + (logg1

g2) · y = x + αy . (1)

Now, for every x ∈
�

q there is a unique y ∈
�

q satisfying the above equation (and similarly
for y). (We use the fact here that α 6= 0.) In particular, then, there are exactly q solutions
to the above equation and furthermore each of these possibilities are equally likely from the
point of view of A.

Now, consider the term gx
3 gy

4 . We will be interested in the probability that gx
3 gy

4 = µ,
where µ is an arbitrary group element. In order for this to occur, we must have logg1

µ =
logg1

(gx
3 gy

4); i.e.:

logg1
µ

= x · logg1
g3 + y · logg1

g4

= r · x + r′α · y . (2)

Let z1 = logg1
h and z2 = logg1

µ. Then Equations (1) and (2) form a system of linear
equations in x and y (over

�
q) given by B~x = ~z, where

B =

(

1 α
r r′α

)

, ~x = [x y]T , ~z = [z1 z2]
T .

Assuming r′ 6= r and α 6= 0 (see above), the matrix B above has rank 2 and therefore
the above system of equations always has a (unique) solution in x, y. But since µ was an
arbitrary group element, this means that each possible value µ is possible and moreover,
each value of µ is equally likely. In other words, what we are saying is the following: given
g1, g2, g3, g4, and h = gx

1gy
2 for x and y chosen uniformly at random from

�
q (and assuming

logg1
g3 6= logg2

g4), even an all-powerful algorithm cannot predict the value of gx
3gy

4 with
probability better than 1/q. (again, this is because all values of gx

3gy
4 are equally likely).
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Since gx
3 gy

4 is distributed uniformly in the group (from the point of view of A), it essen-
tially acts like a “one-time pad” and thus A has no information (in an information-theoretic
sense) about which message was encrypted, and hence no information about the value of b.
This implies the claim.

The above claim implies:

Pr[Â outputs “DDH tuple” | random tuple] = 1/2± negl(k).

Thus, the advantage of Â is negligibly close to:
∣

∣Pr[b = b′ | A attacks real scheme]− 1/2
∣

∣ .

Since we know that the advantage of Â must be negligible, this implies that the probability
that A correctly guess the value of b must be negligibly close to 1/2. But this exactly means
that the encryption scheme is semantically secure, as desired.

4 The Cramer-Shoup-“Lite” Cryptosystem

We next define the Cramer-Shoup “lite” encryption scheme. This is a step toward the full
Cramer-Shoup scheme, but is only secure against non-adaptive chosen-ciphertext attacks.
The scheme is defined as follows (g1, g2 are randomly-chosen generators of group G):

KeyGen(1k): x, y, a, b←
�

q

h = gx
1gy

2

c = ga
1gb

2

PK = 〈g1, g2, h, c〉
SK = 〈x, y, a, b〉

EPK(m): r ←
�

q

output 〈gr
1, gr

2, hr ·m, cr〉

DSK(u, v, e, w): // Verify w has the correct form
if (w = uavb), then output e

uxvy

else output ⊥

Correctness: If the ciphertext is computed honestly, the validity check succeeds since

w = cr =
(

ga
1gb

2

)r

= (gr
1)

a (gr
2)

b = uavb

and the message is then recovered as

e

uxvy
=

hrm

(gr
1)

x(gr
2)

y
=

hrm

(gx
1 gy

2)r
= m.

We now prove the security of the scheme.

Theorem 4 Under the DDH Assumption, the above encryption scheme is secure against
non-adaptive chosen-ciphertext attack.
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Proof The proof is very similar to the proof of the previous theorem. As there, assume
we are given a ppt algorithm A attacking the above encryption scheme. We construct
algorithm Â trying to distinguish DDH tuples from random tuples. As in the previous
proof, we will argue that if the tuple given to Â is a DDH tuple, then the view of A is
identical to its view when attaching the above encryption scheme. On the other hand, if
the tuple given to Â is a random tuple, then A will have no information about the message
that is encrypted in an information-theoretic sense. The difference here is that we will be
considering the more difficult case of CCA-1 security, and we must show that the queries
made to the decryption oracle by A will not reveal anything. With this in mind, let us
begin a formal proof.

Given some adversary A attacking the above encryption scheme via a non-adaptive
chosen-ciphertext attack, we construct an adversary Â as follows:

Â(g1, g2, g3, g4)

x, y, a, b←
�

q

h = gx
1 gy

2 ; c = ga
1gb

2

PK = 〈g1, g2, h, c〉
SK = 〈x, y, a, b〉

(m0,m1)← ADSK(·)(PK)
b← {0, 1}
C = 〈g3, g4, gx

3 gy
4 ·mb, ga

3gb
4〉

b′ ← A(PK,C)
if b = b′, then guess “DDH tuple”
else guess “random tuple”

Claim 5 If Â gets a DDH tuple, then A’s view of the game is the same as in an execution
of the real Cramer-Shoup-lite encryption scheme.

A corollary of this claim is that

Pr[Â outputs “DDH tuple” | DDH tuple] = Pr[b′ = b | A attacks real scheme].

We now prove the claim.
Certainly the public key created by Â is exactly identical to the public key seen by A in

a real execution of the encryption scheme. In fact, the secret key held by Â is also identical
to that used in a real execution of the encryption scheme, and thus the decryption queries
of A are answered exactly as they would be in a real execution of the encryption scheme.
The only thing left to examine is the ciphertext. But if the input to A is a DDH tuple, then
we can write g3 = gr

1 and g4 = gr
2 where r is uniformly distributed in

�
q. But then simple

algebra shows that the ciphertext is distributed identically to the challenge ciphertext in a
real execution of the encryption scheme (details left to the reader).

Claim 6 If Â gets a random tuple, then (with all but negligible probability) A has no infor-
mation about the bit b chosen by Â. We remark that this holds in an information-theoretic
sense, for all-powerful A, as long as A can only make polynomially-many queries to the
decryption oracle.
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Before proving the claim, we show how this claim completes the proof of the theorem.
The claim implies that the probability that A correctly guesses b is negligibly close to 1/2
and therefore Pr[Â outputs “DDH tuple” | random tuple] is negligibly close to 1/2 as well.
Thus, the advantage of Â is negligibly close to:

∣

∣Pr[b = b′ | A attacks real scheme]− 1/2
∣

∣ .

Since the DDH assumption implies that the advantage of Â is negligible, this implies that
the probability that A correctly guesses the value of b when attacking the real scheme is
negligibly close to 1/2. But this is exactly the definition of CCA-1 security.

We return to the proof of the claim. The proof is similar to the analogous claim proven
previously, in that we argue that A’s information about x and y will not be enough to
determine which message was encrypted. But we have to be a little more careful here because
A can now potentially learn additional information about x and y from the decryption oracle
queries it makes.

Let (g1, g2, g3, g4) be a random tuple. As before, we may write these as:

〈g1, g2 = gα
2 , g3 = gr

1, g4 = gr′

2 〉,

where with all but negligible probability α 6= 0 and r 6= r ′ (and we assume this from now
on). From PK, adversary A learns that h = gx

1 gy
2 and this constrains x, y according to:

logg1
h = x + (logg1

g2) · y = x + αy (3)

exactly as before.
We now consider what additional information A learns about x, y from its queries to

the decryption oracle. When A makes a decryption oracle query (µ, ν, e, w) there are two
cases: either there exists an r′′ such that µ = gr′′

1 and ν = gr′′

2 (and hence this ciphertext is
“legal”), or not. We call queries of the latter form “illegal”. We first show that A only learns
additional information about x, y if it makes an illegal query which is not rejected. But
we next show that (with all but negligible probability) all A’s illegal queries are rejected.
Putting this together will imply that A does not learn additional information about x, y
with all but negligible probability.

Claim 7 A gets additional information about x, y only if it submits a decryption query
(µ, ν, e, w) such that:

1. logg1
µ 6= logg2

ν (i.e., an illegal query), and

2. DSK(·) does not return ⊥.

To see this, first suppose that DSK(·) returns ⊥. The only time this happens is when the
decryption routine rejects because w is not of the correct form. But this check only involves
a and b, and hence cannot reveal any information about x, y.

Next suppose that A submits a query for which logg1
µ = logg2

ν = r′′ for some arbitrary
r′′. In this case, based on the output m of the decryption oracle, A learns that m = e

µxνy .
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Taking logarithms of both sides means that A learns the following linear constraint on x
and y:

logg1
m

= logg1
e− (logg1

µ)x− (α logg2
ν)y

= logg1
e− r′′x− αr′′y

(note that e and m are known, so x and y are the only variables here). But this equation is
linearly dependent on Equation (3). Thus, this does not introduce any additional constraint
on x, y and hence the adversary has not learned any additional information about x, y.

Claim 8 The probability that A submits a decryption query (µ, ν, e, w) for which logg1
µ 6=

logg2
ν but DSK(µ, ν, e, w) 6=⊥ is negligible.

Let logg1
µ = r1 and logg2

ν = r2. In order for the decryption oracle to not reject, the

adversary must “predict” the value of µaνb (so that it can set w equal to this value). We
show that it cannot do so with better than negligible probability.

Consider the information the adversary knows about a, b. From the public key, A learns
that c = ga

1gb
2 and this constrains a, b according to:

logg1
c = a + (logg1

g2) · b = a + αb . (4)

The first time A makes an illegal decryption oracle query with logg1
µ 6= logg2

ν, the above
equation represents all the information the adversary knows about a, b. Now, let w ′ be an
arbitrary group element. The value of µaνb is equal to w′ exactly if:

logg1
w′

= a logg1
µ + b logg1

ν

= r1 · a + αr2 · b . (5)

But Equations (4) and (5) (viewed as equations in unknowns a, b over
�

q) are linearly
independent and hence have a solution in terms of a, b. Since this is true for arbitrary w ′,
this means that any value of w′ is possible (in fact, they are all equally likely) and hence A
can only predict the correct value of w with probability 1/q. (Note that this argument is
substantially similar to the proof of Claim 3, above.)

Now, the above was true for the first illegal decryption query of A. However, each illegal
decryption query of A does reveal some additional information about a, b. In particular,
when an illegal query (µ, ν, e, w) is rejected the adversary learns that w 6= µaνb. At best,
however, this eliminates one possibility for a, b. From Equation (4 alone, there are q possi-
bilities for (a, b), and each rejected decryption query of A eliminates at most one of these
solutions. Thus, at the time of the (p + 1)th decryption query of A, assuming the first p
of A’s illegal decryption queries were rejected, there are (at least) q − p possible solutions
for (a, b). The argument of the previous paragraph now has to be modified to take this
into account. But what we see is that eliminating one possibility for (a, b) has the effect of
eliminating one possible value of w. So now the probability that A can correctly guess w is
1/(q − p).
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Assume A makes a total of p decryption queries. Straightforward probability calculations
show that the probability that any of A’s illegal queries are not rejected is at most p/(q−p)
(in each of p illegal decryption queries, A has at best probability 1/(q− p) of the query not
being rejected). But since p is polynomial and q is exponential, this is a negligible quantity.

Putting the above two claims together shows that, with all but negligible probability,
A never learns any additional information about x, y beyond that implied by Equation (3).
Assuming this is the case, an argument exactly like that given in the proof of Claim 3 shows
that gx

1gy
2 is uniformly distributed in the group (from the point of view of A) and hence A

has no information about the value of b. This completes the proof of Claim 6, and thus the
proof of the theorem.
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