A Simple Byzantine Agreement Protocol

JONATHAN KATZ*

October 23, 2013

Berman, Garay, and Perry [1] give a simple BA protocol for single-bit inputs with polynomial complexity and optimal resilience. The protocol involves running the following *phase-king* subroutine with parties P_1, \ldots, P_{t+1} successively playing the role of the king.

Round 1 Each party P_i sends their input v_i to all other parties.

 P_i then sets $C_i^b := 1$ (for $b \in \{0, 1\}$) iff at least n - t parties sent it the bit b.

Round 2 Each party P_i sends C_i^0 and C_i^1 to all other parties. Let $C_{i \to j}^b$ denote the relevant value received by P_j from P_i .

Each party P_i sets $D_i^b := \left| \left\{ j : C_{j \to i}^b = 1 \right\} \right|$. If $D_i^1 > t$, it sets $v_i := 1$; otherwise, it sets $v_i := 0$.

Round 3 The king P_k sends v_k to all parties. Each party P_i then updates their input as follows: If $D_i^{v_i} < n-t$ then set v_i equal to the value the king sent to P_i ; otherwise, leave v_i unchanged.

We begin with two lemmas about the phase king (sub-)protocol.

Lemma 1 Let t < n/2, and assume all n-t honest parties begin the phase-king subroutine holding the same input b. Then all honest parties terminate that subroutine with the same output b.

Proof Since all honest parties begin with input b, in the first round each honest party receives b from at least n-t parties, and receives 1-b from at most t < n-t parties. So each honest P_i sets $C_i^b := 1$ and $C_i^{1-b} := 0$. It follows that in round 2, each honest P_i has $D_i^b \ge n-t > t$ and $D_i^{1-b} \le t$, and $v_i = b$ at the end of that round. Since $D_i^{v_i} = D_i^b \ge n-t$ for an honest P_i , all honest parties ignore the value sent by the king and terminate the phase-king subroutine with output b.

Lemma 2 Let t < n/3. If the king is honest in some execution of the phase-king subroutine, then the outputs of all honest parties agree at the end of that subroutine.

Proof An honest king sends the same value v_k to all parties. So the only way agreement can possibly fail to hold is if some honest party P_i does not set their input to the king's value, i.e., if $D_i^{v_i} \ge n - t$. We claim that if there exists an honest party P_i for whom $D_i^{v_i} \ge n - t$, then $v_i = v_k$ and so agreement holds anyway. To see this, consider the two possibilities:

• Case 1: $\mathbf{v_i} = \mathbf{1}$. Since $D_i^1 \ge n - t$ we have $D_k^1 \ge n - 2t > t$, and so $v_k = 1$ as well.

^{*}jkatz@cs.umd.edu. Department of Computer Science, University of Maryland.

• Case 2: $\mathbf{v_i} = \mathbf{0}$. The fact that $D_i^0 \ge n - t$ implies $D_k^0 \ge n - 2t > t$. So at least one honest party P_j sent $C_{j \to k}^0 = 1$ to P_k , implying that at least n - t parties sent the bit '0' to P_j in round 1 and consequently at most t parties sent '1' to P_j in round 1. But then any honest party received a '1' from at most 2t < n - t parties in round 1, and so any honest party P_i has $C_i^1 = 0$. It follows that each honest party, and P_k in particular, has $D_k^1 \le t$; we conclude that $v_k = 0$ as desired.

Theorem 1 The above protocol achieves Byzantine agreement for any t < n/3.

Proof Say all honest parties begin holding the same input. Then Lemma 1 implies that none of the honest parties ever change their input value in any of the phase-king subroutines, and so in particular they all terminate with the same output.

In any other case, we know that there must be at least one execution of the phase-king subroutine in which the king is honest. Following that execution, Lemma 2 guarantees that all honest parties hold the same input. Lemma 1 ensures that this will not change throughout the rest of the protocol.

References

 P. Berman, J. Garay, and K. Perry. Bit Optimal Distributed Consensus. In Computer Science Research, pp. 313–322, Plenum Publishing Corporation, 1992.