
CMSC 858K — Introduction to Secure Computation October 4, 2013

Lecture 13

Lecturer: Jonathan Katz Scribe(s): Adam Groce

1 Secure Multiparty Computation

The (semi-honest) MPC security definition is very similar to the 2-party case. There are
now n parties, up to t of which may be corrupted. The attacker’s view is the union of the
views of all the corrupted parties. We then require, as in the 2-party case, that a simulator
with black box access to the ideal functionality can simulate the view of any attacker.
It must be specified whether the attacker can eavesdrop on communication between two
honest parties. If so, some communication may need to be encrypted. (This is also relevant
in 2-party computation when neither party is corrupted.)

1.1 GMW Protocol

The multiparty GMW protocol is similar to the 2-party case. The invariant to be maintained
is that for each wire value b, each party Pi holds bi such that b1⊕ . . .⊕ bn = b. The protocol
guarantees security for t ≤ n (though the t = n case is trivial). The protocol consists of
several pieces:

1. Input sharing

• Pi has input xi.

• Pi chooses xi,1, . . . , xi,n uniformly at random subject to xi,1 ⊕ . . .⊕ xi,n = xi.

• Pi sends xi,j to Pj .

2. Evaluating XOR gates

• Assume gate is computing a⊕ b, where a and b are wire values.

• Pi locally computes ci = ai ⊕ bi.

• Commutative property of XOR guarantees c = a⊕ b.

3. Evaluating multiplication gates

• Need c = ab = (a1 ⊕ . . .⊕ an)(b1 ⊕ . . .⊕ bn) = (
⊕

i aibi)⊕ (
⊕

i<j aibj ⊕ ajbi).

• aibi can be computed locally.

• For each value aibj ⊕ ajbi a protocol between each pair of parties. Pi picks cii,j
at random. For each possible set of values (aj , bj), Pi knows what value of cji,j
will cause cii,j ⊕ cji,j = aibj ⊕ ajbi. The two parties then use 1-out-of-4 OT to let

Pj select the correct cji,j value.

• Each Pi now sets ci = aibi ⊕
⊕

j 6=i c
i
i,j .

13-1

• Correctness is now guaranteed:
⊕

i ci =
⊕

i

[
aibi ⊕

⊕
i<j(c

i
i,j ⊕ cji,j)

]
= (

⊕
i aibi)⊕

(
⊕

i<j aibj ⊕ ajbi).

4. Output revelation

• Assume no output wire is used as an input wire. (Easy to make the circuit this
way.)

• If wire value b is part of the output for Pi, all parties send their shares of b to Pi.

We skip the formal proof of security, though an intuitive understanding of why the
protocol is secure is very straightforward. Each value that each player has is one of n shares
of a meaningful value, and an adversary that controls less than n parties can learn nothing
from that. The exception is the intermediate values cii,j in the multiplication step, which
are one of only two shares. In these cases the adversary can learn the aibj⊕ajbi) value, but
this was already independently computable by the adversary, who has access to ai, aj , bi,
and bj .

1.2 Ben-Or, Goldwasser, Wigderson (BGW) Protocol

This protocol gives information-theoretic security. It assumes that the adversary cannot
eavesdrop on communication between honest parties and that t < n/2.

Computation is done over a field F. We assume that |F| > n and that 1, . . . , n are
elements of F or refer to such elements through some public mapping. Again, each party will
hold secret shares of the true value on each wire. Formally, the invariant being maintained
is that for any wire with value b, each party Pi holds bi such that there exists a polynomial
f of degree t with f(i) = bi (for all i) and f(0) = b.

1. Input sharing

• Pi has input xi.

• Pi chooses a random degree t polynomial f such that f(0) = xi.

• Pi sends f(j) to Pj .

2. Evaluating addition gates gates

• Assume gate is computing a + b, where a and b are wire values.

• Pi locally computes ci = ai + bi.

• The pointwise sum of two degree t polynomials is another degree t polynomial,
so correctness holds.

• Note that this can also be used to multiply by a constant.

3. Evaluating multiplication gates

• Pi locally multiplies to get ci = aibi. These ci values now are points on the
product polynomial c, but this polynomial is degree 2t and no longer random.

13-2

• Each Pi then shares its ci value. As noted above, these shares of shares can be
used to locally compute shares of any linear function of the shares ci.

• Lagrange interpolation gives a formula for computing the intercept of the poly-
nomial c given only the points {ci}i. This formula is a linear function with
known constants. Therefore the parties can compute this linear function using
the shares of each ci. The result are shares of the intercept value. Unlike the
initial ci values, these are points on a degree t polynomial. (The randomness of
this polynomial is more subtle, but also holds.)

4. Output revelation

• Assume no output wire is used as an input wire. (Easy to make the circuit this
way.)

• If wire value b is part of the output for Pi, all parties send their shares of b to Pi.

13-3

