
CMSC 858K — Introduction to Secure Computation October 7, 2013

Lecture 14

Lecturer: Jonathan Katz Scribe(s): Adam Groce

1 Beaver-Micali-Rogaway Protocol

The protocols we have already discussed for semi-honest MPC have a round complexity
that is linear in the depth of the circuit being evaluated. This protocol will instead have
constant round complexity. Security is guaranteed for t < n. The basic idea is to use a
garbled circuit, but instead of a single party computing that locally the parties will run one
of the MPC protocols we already know to compute the garbled circuit, then all can evaluate
that circuit locally.

Doing the above the most straightforward way will result in round complexity linear in
the depth of the circuit that generates garbled circuits. This is constant, but potentially very
large. To improve efficiency, we note that creating garbled circuits is a highly parallelizable
task. Each gate’s garbled table can be computed independently (with the exception of first
fixing the keys associated with each wire).

Take as our generic gate one that has wires 1 and 2 as input and wire 3 as output. Wire
1 has two keys associated with it, k01 and k11, associated with values on the wire of 0 and
1, respectively. Similarly, wire 2 has keys k02 and k12 associated with it, and wire 3 has keys
k03 and k13. Each gate has a unique gate ID. We will assume this gate has gate ID g. In the
two-party setting, the table would consist of four values. For example, the value associated
with wires 1 and 2 both having 0 values on them would be ka3 ⊕ Fk01

(g|00) ⊕ Fk02
(g|00)

where a is the value wire 3 should have when both input wires have 0 values. The garbled
table would have 4 such values, corresponding to combinations of values for wires 1 and 2,
randomly permuted.

In the multiparty setting, we change the keys to now be a combination of subkeys, one
controlled by each party. For example, k02 = (k02,1, . . . , k

0
2,n), where k02,i is held by Pi (and

generated randomly by Pi at the start of the protocol). Where we would previously have
Fk01

(g|00) we now have Fk01,1
(g|00) ⊕ . . . ⊕ Fk01,n

(g|00). This means that the example table

value given before is now

ka3 ⊕ Fk01,1
(g|00)⊕ . . .⊕ Fk01,n

(g|00)⊕ Fk02,1
(g|00)⊕ . . .⊕ Fk02,n

(g|00).

Having the key split up like this between parties means that collectively the players can
compute the garbled gates, just as a single player would do in the past, but no player
actually knows the full wire keys, which would compromise security.

We now have to figure out how to compute these garbled tables. The simple first idea is
to just take each player to have the six relevant inputs, k01,i, k

1
1,i, k

0
2,i, k

1
2,i, k

0
3,i, and k13,i, and

then to use an MPC protocol to compute the garbled table. This works, but the circuit will
have depth (and therefore round complexity) linear in the depth of F (and therefore the
security parameter).

14-1



We can, however, improve the efficiency. For the four input key values, we can let the
relevant party compute the pseudorandom function first, and use its output (ex., Fk01,1

(g|00))

as the input to the MPC protocol. This means that the MPC protocol is just computing
XORs of the inputs and then permuting the four outputs randomly, which is a much simpler
circuit. It can be done in reasonable depth, independent of the security parameter.

14-2


