CMSC 858K — Introduction to Secure Computation		October 11, 2013
Lecture 16		
Lecturer: Jonathan Katz	Scribe(s)	: Alex J. Malozemoff

1 Malicious Security, Continued

To finish off our discussion of malicious security, we mention some definitional variants. Recall that an *n*-party protocol Π for computing some function f is *t*-secure if for all PPT adversaries \mathcal{A} corrupting t parties, there exists some expected polynomial-time simulator \mathcal{S} corrupting the same parties such that

$$\left\{ \mathbf{Real}_{\bar{x},z}^{\mathcal{A},\Pi}(1^k) \right\}_{\bar{x},z} \stackrel{\mathrm{c}}{\approx} \left\{ \mathbf{Ideal}_{\bar{x},z}^{\mathcal{S},f}(1^k) \right\}_{\bar{x},z}.$$

We have the following security variants:

- One-sided security (for two-party protocols): Malicious security only holds when a specific party is corrupted (e.g., the evaluator in Yao's 2PC protocol).
- Privacy-only: Protocol Π for computing some function f is t-private for malicious adversaries if for all PPT adversaries \mathcal{A} corrupting t parties, there exists some expected polynomial time simulator \mathcal{S} corrupting the same parties such that

$$\left\{\mathbf{View}_{\bar{x},z}^{\mathcal{A},\Pi}(1^k)\right\}_{\bar{x},z} \stackrel{\mathrm{c}}{\approx} \left\{\mathbf{Output}_{\bar{x},z}^{\mathcal{S},f}(n)\right\}_{\bar{x},z}.$$

This is usually used in cases where the attacker gets no output.

2 Zero-knowledge Proofs

Let L be an \mathcal{NP} -language, and let R_L be a polynomial-time computable relation such that $\forall x \exists w \ R_L(x,w) = 1 \iff x \in L$. A zero-knowledge (ZK) proof for L is a two-party protocol between a prover P and a verifier V, such that the following three conditions hold:

- 1. (Completeness): $\forall x, w, R_L(x, w) = 1 \implies \langle P(x, w), V(x) \rangle = 1.$
- 2. (Soundness): $\forall x \notin L, \forall P^*, \Pr[\langle P^*(x), V(x) \rangle = 1] \leq \varepsilon(k)$. (Note that there are no restrictions on the running time of P^* .)
- 3. (Zero-knowledge): $\forall PPT V^* \exists S$ running in expected polynomial time such that

$$\left\{ \mathbf{View}_{\langle P(x,w), V^*(x) \rangle}^{V^*}(1^k) \right\}_{(x,w) \in R_L} \stackrel{\mathrm{c}}{\approx} \left\{ \mathcal{S}(x) \right\}_{(x,w) \in R_L}$$

A zero-knowledge argument for L is equivalent to the above definition, except soundness holds for all <u>PPT</u> P^* (instead of P^* 's running time being arbitrary).

We now show a zero-knowledge proof for graph Hamiltonicity¹. Since graph Hamiltonicity is \mathcal{NP} -complete, this implies that there exist zero-knowledge proofs for all languages in \mathcal{NP} .

Our zero-knowledge proof assumes the existence of a statistically binding and computationally hiding commitment scheme. We assume the reader is familiar with commitment schemes; if not, see [Gol01, $\S4.4.1$]. The existence of such a commitment scheme is implied by one-way functions [Gol01, $\S4.4.1.3$].

Completeness is straightforward to show. For soundness, we have the following claim:

Theorem 1 If the commitment scheme com is statistically binding, then the above protocol has soundness 1/2.

Proof This follows from the fact that the commitment scheme is statistically binding, and thus cannot be broken. Thus, if P^* can answer correctly for both b = 0 and b = 1, then G must have a Hamiltonian cycle.

Finally, we have the following theorem for the zero-knowledge property:

Theorem 2 If the commitment scheme com is computationally hiding, then the above protocol is zero-knowledge.

Proof Fix a PPT verifier V^* . We construct a simulator $\mathcal{S}(G, z)$, which takes as input a graph G and an auxiliary string z, as follows:

- Do the following at most k times:
 - 1. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$.

¹See https://en.wikipedia.org/wiki/Hamiltonicity for a summary of the graph Hamiltonicity problem.

- 2. If b = 0, let M' be the adjacency matrix representation of a random permutation of G, and send com(M') to V^* .
- 3. If b = 1, let M' be the adjacency matrix representation of a random permutation of an n vertex Hamiltonian cycle, and send com(M') to V^* .
- 4. If V^* sends b' = b, then open com(M') accordingly and output the transcript.
- 5. If V sends $b' \neq b$, then repeat.

We claim that $\{\mathcal{S}(G,z)\}_{G,z} \stackrel{c}{\approx} \left\{ \mathbf{View}_{\langle P(x,w),V^*(x,z)\rangle}^{V^*}(1^k) \right\}_{G,z}$. We prove this via a hybrid argument. Consider the following hybrid $\mathbf{Hybrid}(G,w,z)$:

- Do the following at most k times:
 - 1. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$.
 - 2. Compute com(M') as in the real protocol and send it to V^* .
 - 3. If V^* sends b' = b, then open com(M') accordingly and output the transcript.
 - 4. If V sends $b' \neq b$, then repeat.

 $\mathbf{Claim 3} \ \left\{ \mathbf{Hybrid}(G, w, z) \right\}_{G, z} \stackrel{c}{\approx} \left\{ \mathbf{View}_{\langle P(x, w), V^*(x, z) \rangle}^{V^*}(1^k) \right\}_{G, z}.$

Proof Because of the uniform choice of b, the probability that **Hybrid** never succeeds is 2^{-k} . Conditioned on succeeding, **Hybrid** is equal to **View**, and thus the above claim holds.

Claim 4 {Hybrid}(G, w, z)}_{G,z} $\stackrel{c}{\approx}$ { $\mathcal{S}(G, z)$ }_{G,z}.

Proof We prove this by reduction to the hiding property of the commitment scheme. Let \mathcal{D} be a distinguisher between **Hybrid** and \mathcal{S} that succeeds with probability $\varepsilon(k)$. Let $\operatorname{com}(\cdot, \cdot)$ be a "left-right" commitment oracle which returns either a commitment to its left input or a commitment to its right input. Define an attacker $\mathcal{A}^{\operatorname{com}(\cdot, \cdot)}$, which takes as input a graph G, a witness w, and an auxiliary string z, as follows:

- Repeat k times:
 - 1. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$.
 - 2. If b = 0 then commit to a random permutation of G as above.
 - 3. If b = 1 then commit to the Hamiltonian cycle in a random permutation of G, and then for all other indices in the adjacency matrix E input the pair $(E_{i,j}, 0)$ to the commitment oracle.
 - 4. If V^* sends b' = b, then open the commitments and run \mathcal{D} on the resulting transcript, and stop, outputting what \mathcal{D} outputs.
- Output \perp .

If $\operatorname{com}(\cdot, \cdot)$ commits to the left input, then the transcript is distributed exactly as in **Hybrid**; if $\operatorname{com}(\cdot, \cdot)$ commits to the right input, then the transcript is distributed exactly as in S. Thus, \mathcal{A} succeeds in distinguishing the commitments with probability $\varepsilon(k)$, and thus by the assumed security of the commitment scheme it must be that $\varepsilon(k) \leq \operatorname{negl}(k)$.

Thus, we have that $\{\mathcal{S}(G,z)\}_{G,z} \stackrel{c}{\approx} \left\{ \operatorname{\mathbf{View}}_{\langle P(x,w), V^*(x,z) \rangle}^{V^*}(1^k) \right\}_{G,z}$, completing the proof.

References

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, 2001.