1 Malicious Security, Continued

To finish off our discussion of malicious security, we mention some definitional variants. Recall that an \(n \)-party protocol \(\Pi \) for computing some function \(f \) is \(t \)-secure if for all ppt adversaries \(A \) corrupting \(t \) parties, there exists some expected polynomial-time simulator \(S \) corrupting the same parties such that

\[
\begin{align*}
\{ \text{Real}^{A,\Pi}_{x,z}(1^k) \} \approx \{ \text{Ideal}^{S,f}_{x,z}(1^k) \}
\end{align*}
\]

We have the following security variants:

- One-sided security (for two-party protocols): Malicious security only holds when a specific party is corrupted (e.g., the evaluator in Yao’s 2PC protocol).

- Privacy-only: Protocol \(\Pi \) for computing some function \(f \) is \(t \)-private for malicious adversaries if for all ppt adversaries \(A \) corrupting \(t \) parties, there exists some expected polynomial time simulator \(S \) corrupting the same parties such that

\[
\begin{align*}
\{ \text{View}^{A,\Pi}_{x,z}(1^k) \} \approx \{ \text{Output}^{S,f}_{x,z}(n) \}
\end{align*}
\]

This is usually used in cases where the attacker gets no output.

2 Zero-knowledge Proofs

Let \(L \) be an \(\mathcal{NP} \)-language, and let \(R_L \) be a polynomial-time computable relation such that \(\forall x \exists w \ R_L(x,w) = 1 \iff x \in L \). A zero-knowledge (ZK) proof for \(L \) is a two-party protocol between a prover \(P \) and a verifier \(V \), such that the following three conditions hold:

1. (Completeness): \(\forall x, w, R_L(x, w) = 1 \implies \langle P(x, w), V(x) \rangle = 1 \).

2. (Soundness): \(\forall x \notin L, \forall P^*, \Pr[\langle P^*(x), V(x) \rangle = 1] \leq \epsilon(k) \). (Note that there are no restrictions on the running time of \(P^* \).)

3. (Zero-knowledge): \(\forall \text{ ppt } V^* \exists S \) running in expected polynomial time such that

\[
\begin{align*}
\{ \text{View}^{V^*}_{P(x,w),V^*(x)}(1^k) \} \approx \{ S(x) \} \end{align*}
\]
A zero-knowledge argument for L is equivalent to the above definition, except soundness holds for all ppt P^* (instead of P^*'s running time being arbitrary).

We now show a zero-knowledge proof for graph Hamiltonicity\(^1\). Since graph Hamiltonicity is \mathcal{NP}-complete, this implies that there exist zero-knowledge proofs for all languages in \mathcal{NP}.

Our zero-knowledge proof assumes the existence of a statistically binding and computationally hiding commitment scheme. We assume the reader is familiar with commitment schemes; if not, see [Gol01, §4.4.1]. The existence of such a commitment scheme is implied by one-way functions [Gol01, §4.4.1.3].

Zero-knowledge Protocol for Graph Hamiltonicity

\[
P(G, w) \\ V(G) \\
\text{com}(M') \\
b \\
\begin{array}{c}
\text{Check that } m \text{ is a valid decommitment, outputting 1 if so and 0 otherwise.}
\end{array}
\]

Let G' be a random permutation π of G. Let M' be the adjacency matrix representation of G', and let $\text{com}(M')$ be the commitment to each entry in M'.

If $b = 0$, let m be the decommitment to all entries in M'. If $b = 1$, let m be the decommitment to the Hamiltonian cycle in M'.

Completeness is straightforward to show. For soundness, we have the following claim:

Theorem 1 If the commitment scheme com is statistically binding, then the above protocol has soundness $1/2$.

Proof This follows from the fact that the commitment scheme is statistically binding, and thus cannot be broken. Thus, if P^* can answer correctly for both $b = 0$ and $b = 1$, then G must have a Hamiltonian cycle.

Finally, we have the following theorem for the zero-knowledge property:

Theorem 2 If the commitment scheme com is computationally hiding, then the above protocol is zero-knowledge.

Proof Fix a ppt verifier V^*. We construct a simulator $S(G, z)$, which takes as input a graph G and an auxiliary string z, as follows:

- Do the following at most k times:

 1. Choose $b \leftarrow \{0, 1\}$.

2. If \(b = 0 \), let \(M' \) be the adjacency matrix representation of a random permutation of \(G \), and send \(\text{com}(M') \) to \(V^* \).

3. If \(b = 1 \), let \(M' \) be the adjacency matrix representation of a random permutation of an \(n \) vertex Hamiltonian cycle, and send \(\text{com}(M') \) to \(V^* \).

4. If \(V^* \) sends \(b' = b \), then open \(\text{com}(M') \) accordingly and output the transcript.

5. If \(V \) sends \(b' \neq b \), then repeat.

We claim that \(\{ \mathcal{S}(G,z) \}_{G,z} \approx \{ \mathcal{V}(P(x,w),V^*(x,z))^{(1^k)} \}_{G,z} \). We prove this via a hybrid argument. Consider the following hybrid \(\text{Hybrid}(G,w,z) \):

- Do the following at most \(k \) times:
 1. Choose \(b \leftarrow \{0,1\} \).
 2. Compute \(\text{com}(M') \) as in the real protocol and send it to \(V^* \).
 3. If \(V^* \) sends \(b' = b \), then open \(\text{com}(M') \) accordingly and output the transcript.
 4. If \(V \) sends \(b' \neq b \), then repeat.

Claim 3 \(\{ \text{Hybrid}(G,w,z) \}_{G,z} \approx \{ \mathcal{V}(P(x,w),V^*(x,z))^{(1^k)} \}_{G,z} \).

Proof Because of the uniform choice of \(b \), the probability that \(\text{Hybrid} \) never succeeds is \(2^{-k} \). Conditioned on succeeding, \(\text{Hybrid} \) is equal to \(\mathcal{V} \), and thus the above claim holds.

Claim 4 \(\{ \text{Hybrid}(G,w,z) \}_{G,z} \approx \{ \mathcal{S}(G,z) \}_{G,z} \).

Proof We prove this by reduction to the hiding property of the commitment scheme. Let \(D \) be a distinguisher between \(\text{Hybrid} \) and \(\mathcal{S} \) that succeeds with probability \(\varepsilon(k) \). Let \(\text{com}(\cdot,\cdot) \) be a “left-right” commitment oracle which returns either a commitment to its left input or a commitment to its right input. Define an attacker \(A^{\text{com}(\cdot,\cdot)} \), which takes as input a graph \(G \), a witness \(w \), and an auxiliary string \(z \), as follows:

- Repeat \(k \) times:
 1. Choose \(b \leftarrow \{0,1\} \).
 2. If \(b = 0 \) then commit to a random permutation of \(G \) as above.
 3. If \(b = 1 \) then commit to the Hamiltonian cycle in a random permutation of \(G \), and then for all other indices in the adjacency matrix \(E \) input the pair \((E_{i,j},0)\) to the commitment oracle.
 4. If \(V^* \) sends \(b' = b \), then open the commitments and run \(D \) on the resulting transcript, and stop, outputting what \(D \) outputs.

- Output \(\bot \).
If $\text{com}(\cdot, \cdot)$ commits to the left input, then the transcript is distributed exactly as in Hybrid; if $\text{com}(\cdot, \cdot)$ commits to the right input, then the transcript is distributed exactly as in S. Thus, A succeeds in distinguishing the commitments with probability $\varepsilon(k)$, and thus by the assumed security of the commitment scheme it must be that $\varepsilon(k) \leq \text{negl}(k)$.

Thus, we have that $\{S(G, z)\}_{G, z} \approx \{\text{View}^{V^*}_{P(w), V^*(x, z)}(1^k)\}_{G, z}$, completing the proof.

References