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1 Zero-knowledge Proofs, Continued

The zero-knowledge (ZK) proof of graph Hamiltonicity from Lecture 16 had soundness error
1/2. We can reduce this soundness error through (sequential) repetition. Namely, we can
repeat the zero-knowledge proof k times to give us a soundness error of 2−k. This is in fact
a consequence of a general theorem:

Theorem 1 Let Π be a ZK proof with auxiliary inputs. Then sequential repetition of Π is
also ZK.

See [Gol01, §4.3.4] for the detailed proof. Note that the above only holds for sequential
repetition. It is unknown whether parallel repetition holds for the graph Hamiltonicity
protocol described in Lecture 16.

Thus, using sequential repetition we have a ZK proof for all ofNP with negligible sound-
ness error. However, this protocol is not constant-round. There do exist constant-round ZK
proofs, but their constructions require assumptions stronger than one-way functions [Gol01,
§4.9]. Note, however, that for the case of ZK arguments, there exist constant-round proto-
cols from one-way functions [FS89]. Finally, note that it is unknown whether there exist
three-round ZK proofs with negligible soundness error.

2 Proofs of Knowledge

A proof of knowledge (PoK) is similar to a ZK proof, except the simulator can “extract” a
witness from any prover who can convince the verifier that some input x is in the language.
Thus, proofs of knowledge demonstrate that the prover “knows” a witness w such that
(x,w) ∈ RL.

Consider the following functionality:

RL

Prover Verifier

x,
w x

(x,w) ?∈
R
L

We can view ZK proofs as providing security in the above functionality against a malicious
verifier, and we can view PoKs as providing security against a malicious prover. Thus, a
ZKPoK realizes the above functionality.
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2.1 Zero-knowledge Proofs of Knowledge Under Sequential Repetition

We now show that sequential repetition of the ZK proof Π for graph Hamiltonicity shown in
Lecture 16 is a ZKPoK. We have already shown that the protocol is ZK, and by Theorem 1
we know that sequential repetition holds for the ZK property. Thus, to complete the proof
we need to demonstrate a knowledge extractor K which runs in polynomial time and extracts
a witness from an arbitrary prover in the case that the verifier accepts. Namely:

Claim 2 If Pr[〈P ∗, V 〉 = 1] = ε(k) > 2−k, then there exists some knowledge extractor K
which extracts a valid witness with probability ε(k).

Proof We construct knowledge extractor K as follows:

Knowledge Extractor K

1. Run execution with the prover P ∗, behaving as an honest verifier V .

2. If V would reject then halt, outputting ⊥.

3. Otherwise, extract a witness by doing the following:

(a) Let b1, . . . , bk be the challenges sent by V in the k executions of Π. Then, re-
peat the following for i ∈ [k], rewinding after each iteration: Use b1, . . . , bi−1, bi
as the challenges to P ∗. If an iteration succeeds, K knows both π, π(G), and
π(Hamiltonian cycle in G), and can thus extract a witness.

We claim that K extracts a witness with probability ε(k). Note that, as ε(k) > 2−k, for
any challenge bitstring b1 · · · bk for which execution succeeds, there must exist some other
challenge bitstring b′1 · · · b′k for which extraction would also succeed. Let b1 · · · bi−1 denote
the longest common prefix between these two strings. If K executes P ∗ for both bi and bi,
it learns both a permutation π of G as well as a permutation of a Hamiltonian cycle, and
thus it can extract the desired witness. Thus, as long as the first set of challenges b1 · · · bk
succeeds, K extracts a witness with probability 1. Noting that the probability of succeeding
in this first step is ε(k) completes the proof.

The simulator S for P ∗ (in the ZKPoK functionality) works as follows:

Simulator S(x)

1. S runs the execution with P ∗, acting as an honest verifier V .

2. If V would reject, S sends a dummy witness to RL.

3. If V would accept, run the knowledge extractor K to extract a witness.

If Pr[〈P ∗, V 〉 = 1] ≤ 2−k, then when execution succeeds S fails to extract, but this
only happens with negligible probability. Now, if Pr[〈P ∗, V 〉 = 1] = ε(k) > 2−k, then
the distributions in the real and ideal worlds are identical, since whenever P ∗ would have
succeeded in the real world, K succeeds in extracting a witness in the ideal world.

17-2



2.2 Proofs of Knowledge Under Parallel Repetition

We now show that the same protocol run in parallel is a PoK. The simulator S for P ∗

works as follows:

Simulator S(x)

1. S interacts with P ∗ just like an honest verifier V would.

2. If V would reject, S sends a dummy witness to RL.

3. If V would accept, S does the following in parallel:

(a) Rewind P ∗ and send another random challenge different from the original one until
finding a successful execution.

(b) If S fails to find a second accepting challenge after 2k steps, S enumerates all possible
challenges in parallel, trying random challenges. (This ensures that if at least one
challenge is answered correctly, then two challenges will always be found.)

Claim 3 S as defined above runs in expected polynomial time.

Proof If P ∗ convinces V with some probability ≤ 2−k, then the expected running time
is ≤ 2−k · 2k · poly(k) = poly(k). If P ∗ convinces V with some probability N/2k > 2−k, then
the expected running time is ≤ N/2k · (2k/(N − 1)) · poly(k) < 2 · poly(k).

Claim 4 If Pr[〈P ∗, V 〉 = 1] = ε(k) > 2−k, then extraction always succeeds.

Proof Denote the two challenge bitstrings sent by S by b1 . . . bk and b′1 . . . b
′
k, and let

i ∈ {1, . . . , k} be an index such that bi = b′i. Thus, applying the same idea as in the proof
of sequential repetition shows that we can extract a witness.
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