CMSC 856K — Introduction to secure Computation October	CMSC 858K -	- Introduction to Secure Computation	October 1
--	-------------	--------------------------------------	-----------

4, 2013

Lecture 17

Lecturer: Jonathan Katz

Scribe(s): Alex J. Malozemoff

Zero-knowledge Proofs, Continued 1

The zero-knowledge (ZK) proof of graph Hamiltonicity from Lecture 16 had soundness error 1/2. We can reduce this soundness error through (sequential) repetition. Namely, we can repeat the zero-knowledge proof k times to give us a soundness error of 2^{-k} . This is in fact a consequence of a general theorem:

Theorem 1 Let Π be a ZK proof with auxiliary inputs. Then sequential repetition of Π is also ZK.

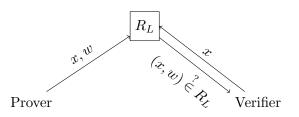
See $[Gol01, \S4.3.4]$ for the detailed proof. Note that the above only holds for sequential repetition. It is unknown whether *parallel* repetition holds for the graph Hamiltonicity protocol described in Lecture 16.

Thus, using sequential repetition we have a ZK proof for all of \mathcal{NP} with negligible soundness error. However, this protocol is not constant-round. There do exist constant-round ZK proofs, but their constructions require assumptions stronger than one-way functions [Gol01, §4.9]. Note, however, that for the case of ZK arguments, there exist constant-round protocols from one-way functions [FS89]. Finally, note that it is unknown whether there exist three-round ZK proofs with negligible soundness error.

Proofs of Knowledge $\mathbf{2}$

A proof of knowledge (PoK) is similar to a ZK proof, except the simulator can "extract" a witness from any prover who can convince the verifier that some input x is in the language. Thus, proofs of knowledge demonstrate that the prover "knows" a witness w such that $(x,w) \in R_L$.

Consider the following functionality:



We can view ZK proofs as providing security in the above functionality against a malicious verifier, and we can view PoKs as providing security against a malicious prover. Thus, a ZKPoK realizes the above functionality.

2.1 Zero-knowledge Proofs of Knowledge Under Sequential Repetition

We now show that sequential repetition of the ZK proof Π for graph Hamiltonicity shown in Lecture 16 is a ZKPoK. We have already shown that the protocol is ZK, and by Theorem 1 we know that sequential repetition holds for the ZK property. Thus, to complete the proof we need to demonstrate a *knowledge extractor* K which runs in polynomial time and extracts a witness from an arbitrary prover in the case that the verifier accepts. Namely:

Claim 2 If $\Pr[\langle P^*, V \rangle = 1] = \varepsilon(k) > 2^{-k}$, then there exists some knowledge extractor K which extracts a valid witness with probability $\varepsilon(k)$.

Proof We construct knowledge extractor K as follows:

Knowledge Extractor K

- 1. Run execution with the prover P^* , behaving as an honest verifier V.
- 2. If V would reject then halt, outputting \perp .
- 3. Otherwise, extract a witness by doing the following:
 - (a) Let b_1, \ldots, b_k be the challenges sent by V in the k executions of Π . Then, repeat the following for $i \in [k]$, rewinding after each iteration: Use $b_1, \ldots, b_{i-1}, \overline{b_i}$ as the challenges to P^* . If an iteration succeeds, K knows both π , $\pi(G)$, and π (Hamiltonian cycle in G), and can thus extract a witness.

We claim that K extracts a witness with probability $\varepsilon(k)$. Note that, as $\varepsilon(k) > 2^{-k}$, for any challenge bitstring $b_1 \cdots b_k$ for which execution succeeds, there must exist some other challenge bitstring $b'_1 \cdots b'_k$ for which extraction would also succeed. Let $b_1 \cdots b_{i-1}$ denote the longest common prefix between these two strings. If K executes P^* for both b_i and $\overline{b_i}$, it learns both a permutation π of G as well as a permutation of a Hamiltonian cycle, and thus it can extract the desired witness. Thus, as long as the first set of challenges $b_1 \cdots b_k$ succeeds, K extracts a witness with probability 1. Noting that the probability of succeeding in this first step is $\varepsilon(k)$ completes the proof.

The simulator \mathcal{S} for P^* (in the ZKPoK functionality) works as follows:

Simulator $\mathcal{S}(x)$

- 1. S runs the execution with P^* , acting as an honest verifier V.
- 2. If V would reject, S sends a dummy witness to R_L .
- 3. If V would accept, run the knowledge extractor K to extract a witness.

If $\Pr[\langle P^*, V \rangle = 1] \leq 2^{-k}$, then when execution succeeds S fails to extract, but this only happens with negligible probability. Now, if $\Pr[\langle P^*, V \rangle = 1] = \varepsilon(k) > 2^{-k}$, then the distributions in the real and ideal worlds are *identical*, since whenever P^* would have succeeded in the real world, K succeeds in extracting a witness in the ideal world.

2.2 Proofs of Knowledge Under Parallel Repetition

We now show that the same protocol run in parallel is a PoK. The simulator S for P^* works as follows:

Simulator $\mathcal{S}(x)$

- 1. S interacts with P^* just like an honest verifier V would.
- 2. If V would reject, S sends a dummy witness to R_L .
- 3. If V would accept, \mathcal{S} does the following in parallel:
 - (a) Rewind P^* and send another random challenge different from the original one until finding a successful execution.
 - (b) If S fails to find a second accepting challenge after 2^k steps, S enumerates all possible challenges in parallel, trying random challenges. (This ensures that if at least one challenge is answered correctly, then two challenges will always be found.)

Claim 3 S as defined above runs in expected polynomial time.

Proof If P^* convinces V with some probability $\leq 2^{-k}$, then the expected running time is $\leq 2^{-k} \cdot 2^k \cdot \operatorname{poly}(k) = \operatorname{poly}(k)$. If P^* convinces V with some probability $N/2^k > 2^{-k}$, then the expected running time is $\leq N/2^k \cdot (2^k/(N-1)) \cdot \operatorname{poly}(k) < 2 \cdot \operatorname{poly}(k)$.

Claim 4 If $\Pr[\langle P^*, V \rangle = 1] = \varepsilon(k) > 2^{-k}$, then extraction always succeeds.

Proof Denote the two challenge bitstrings sent by S by $b_1 \dots b_k$ and $b'_1 \dots b'_k$, and let $i \in \{1, \dots, k\}$ be an index such that $b_i = \overline{b'_i}$. Thus, applying the same idea as in the proof of sequential repetition shows that we can extract a witness.

References

- [FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In Gilles Brassard, editor, Advances in Cryptology – CRYPTO'89, volume 435 of Lecture Notes in Computer Science, pages 526–544, Santa Barbara, CA, USA, August 20–24, 1989. Springer, Berlin, Germany.
- [Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, 2001.