
CMSC 858K — Introduction to Secure Computation October 18, 2013

Lecture 19

Lecturer: Jonathan Katz Scribe(s): Alex J. Malozemoff

1 Zero Knowledge Variants and Results

Recall that a proof-of-knowledge (PoK) is a protocol between a prover P and verifier V with
the property that there exists a knowledge extractor K which can extract a witness from
P in the case that V accepts. In this definition, we assume the prover is “all-powerful”,
i.e., has no bound on its running time. We can weaken this notion by considering an
argument-of-knowledge (AoK), which is defined equivalently to a PoK except the prover
runs in polynomial time. We will demonstrate a constant-round ZKAoK (due to Feige
and Shamir [FS89]) later in this lecture.1 Using our constant-round ZKAoK protocol, we
can achieve a constant-round coin-tossing protocol (due to Lindell [Lin03]). Finally, we
can combine these results to achieve two-party computation with malicious security from
any semi-honest protocol, and thus we get constant-round maliciously-secure two-party
computation.

2 Witness Indistinguishability

Before proceeding to our constant-round ZKAoK protocol, we need to discuss the notion
of witness indistinguishability (WI). A protocol is witness-indistinguishable if a malicious
verifier cannot distinguish which witness a prover is using. More formally:

Definition 1 A protocol execution 〈P, V 〉 is witness-indistinguishable if for all x,w1, w2

such that (x,w1), (x,w2) ∈ RL and for all polynomial time (malicious) verifiers V ∗,{
ViewV ∗

〈P (x,w1),V ∗(x)〉(1
k)
}

c
≈

{
ViewV ∗

〈P (x,w2),V ∗(x)〉(1
k)
}

.
♦

Clearly ZK implies WI: A ZK proof implies that there exists a simulator S such that{
ViewV ∗

〈P (x,w1),V ∗(x)〉(1
k)
}

c
≈ {S(x)} and

{
ViewV ∗

〈P (x,w2),V (x)〉(1
k)
}

c
≈ {S(x)}.

We can also show that WI is preserved under parallel composition (by a standard hybrid
argument). This implies the following corollary:

Corollary 1 k-fold parallel repetition of the ZK proof for graph Hamiltonicity from Lecture
16 is a WIPoK with soundness error 2−k.

1Besides having constant round ZKAoKs, we also have constant round ZKPoKs (due to Goldreich and
Kahan [GK96]). However, we do not discuss this result further.

19-1

3 Constant-round ZKAoK

We now show the Feige-Shamir protocol for constant-round ZKAoKs [FS89]. Let f be a
one-way function.

Feige-Shamir Protocol for Constant-round ZKAoKs

P (x,w) V (x)

�
y1, y2 r1, r2

$← {0, 1}n
yi = f(ri)

�
WIPoK(f−1(y1) or f−1(y2))

WIPoK(f−1(y1) or f−1(y2) or x ∈ L)
-

Theorem 2 The above protocol is a ZKAoK.

Proof We prove this in two steps. We first show that the protocol is a ZK proof, and
then we show that it is an AoK.

Claim 3 The above protocol is a ZK proof.

Let V ∗ be a cheating verifier. We construct a simulator S as follows:

Simulator S for V ∗

1. Receive y1, y2 from V ∗.

2. Verify the PoK from V ∗. If the proof fails, then abort. Otherwise, extract r such that
f(r) ∈ {y1, y2}.

3. Run the final proof as an honest prover would, using witness r.

It is easy to see that this simulator is computationally indistinguishable from the real
execution by the WI property.

Claim 4 The above protocol is an argument-of-knowledge.

Let P ∗ be a (polynomial-time) cheating prover, and let K ′ be the knowledge extractor that
exists for the WIPoK of the statement “f−1(yi) or f−1(y2) or x ∈ L”. We construct a
knowledge extractor K as follows:

Knowledge Extractor K

1. Choose r1, r2
$← {0, 1}k and compute yi = f(ri) for i ∈ {1, 2}.

2. Run the (first) WIPoK using witness r2.

3. If P ∗ succeeds in its WIPoK, then run K ′ to extract either an r such that f(r) ∈ {y1, y2}
or a witness w such that (x,w) ∈ RL.

19-2

If we can show that K ′ does not extract an r such that f(r) ∈ {y1, y2} except with
negligible probability, then this implies that K successfully extracts a witness w such that
(x,w) ∈ RL except with negligible probability. Indeed, say K ′ extracts r with f(r) ∈
{y1, y2} with probability p. Let p1 be the probability that f(r) = y1 and let p2 be the
probability that f(r) = y2. Suppose p1 is non-negligible. We can turn this into an attack

on f as follows: Construct an attacker which, given y1, chooses r2
$← {0, 1}k and sets

y2 = f(r2), runs Step 2 of K with r2 as the witness, and then runs Step 3 of K to extract
f−1(y1). This attack succeeds with probability p1 and thus p1 must be negligible.

Now, suppose p2 is non-negligible. Let K be the same as K, except it uses witness r1
in Step 2 instead of r2, and let p′2 be the probability that K ′ extracts r with f(r) = y2
when used by K. By the WI property, it must be the case that |p′2 − p2| is negligible. Now,
a similar attack to the one described in the previous paragraph shows that p′2 must be
negligible. Thus, K ′ extracts r with f(r) ∈ {y1, y2} with negligible probability, completing
the proof.

4 Constant-round Coin Tossing

We can define the (two-party) coin-tossing functionality, Fct, as follows:

Functionality Fct → {0, 1}k

Output: The functionality computes r
$← {0, 1}k and outputs r to both parties.

Now, consider the following protocol for realizing Fct:

Coin-tossing Candidate Protocol #1

P1 P2

r1
$← {0, 1}k com(r1)

-

� r2 r2
$← {0, 1}k

Output r1 ⊕ r2
r1, decom(com(r1))

- Output r1 ⊕ r2

The problem is that this protocol, while it intuitively looks secure, is not simulatable
when k is the security parameter (the protocol is in fact secure if k is some small fixed
constant, such as 1). Consider the case of a malicious P ∗2 who sets r2 to be some function
of the commitment sent by P1. The simulator is thus unable to fix r1 such that r1⊕ r2 = r
for some uniformly chosen r, since r2 depends on r1.

Thus, we modify this protocol by adding ZKAoKs such that P1 proves knowledge of the
committed value, allowing this value to be extracted by the simulator:

19-3

Coin-tossing Protocol

P1 P2

r1
$← {0, 1}k com(r1)

-
ZKAoK that r1 is the committed value -

� r2 r2
$← {0, 1}k

r1 -
ZK argument that initial commitment was to r1-

Output r1 ⊕ r2 Output r1 ⊕ r2

We now prove that this protocol, due to Lindell [Lin03], securely realizes the Fct func-
tionality.
Proof Let P ∗2 be a malicious party playing the part of P2 in the coin-tossing protocol.
We construct a simulator S for P ∗2 as follows.

Simulator S for P ∗2

1. Query Fct, receiving back r.

2. Compute com(0) and send it to P ∗2 .

3. Simulate the ZKAoK about the validity of the previously sent commitment.

4. Receive r2 from P ∗2 .

5. Send r1 = r2 ⊕ r to P ∗2 .

6. Simulate the ZK argument that the initial commitment was to r1.

The proof is straightforward but involved; see [Lin03] for the details.

We now show a simulator S for a malicious P ∗1 .

Simulator S for P ∗1

1. Query Fct, receiving back r.

2. Receive a commitment from P ∗1 .

3. Verify the ZKAoK from P ∗1 and extract r1.

4. Send r2 = r1 ⊕ r to P ∗1 .

5. Receive r′1 from P ∗1 .

6. Verify P ∗1 ’s ZK argument, and thus r′1 = r1 with high probability.

Again, the proof is straightforward but involved; see [Lin03].

19-4

References

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds.
In Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435
of Lecture Notes in Computer Science, pages 526–544, Santa Barbara, CA, USA,
August 20–24, 1989. Springer, Berlin, Germany.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party compu-
tation. Journal of Cryptology, 16(3):143–184, June 2003.

19-5

