1 Summary

In this lecture we introduced a much more efficient protocol for malicious security given a weaker notation of security. In particular, we talk about efficient GC under 1-bit leakage[1].

In general, we define security by comparing real world to ideal world. When we say a weaker security, we can do the followings:

- Weaken the notation of "comparison"
- Weaken the ideal world
 - 1-bit leakage
 - covert security

weaker model of security The malicious party can send a function $g()$ and get $g(x)$ when receiving result from ideal functionality.

2 The protocol for 1-bit-leakage

The protocol is as follows, where Z^b_i is the label for i-th output wire when the value is b.
3 Proof using simulation

WLOG, we assume that P2 is corrupted and we have simulator S:

1) Extract P2’s input to OT in first phase ⇒ this defines input y

2) send y to ideal functionality and get back v
3) use semi-honest simulation to generate all input-wire labels, Garbled Circuits, to give to P2. We also output \(\{Z_i^{v_i}\}_{i=1}^n \). We choose uniformly random for \(\{\overline{Z}_i^{v_i}\}_{i=1}^n \) and send the matrix of hashes.

4) Extract input wired-labels for P2’s circuit from OT; receive GC, input wired-labels and matrix.
 Extract P2’s input to equality test.

5) Define the following \(g() \) on input \(x \):
 - use the bits of \(x \) to select \(\{\overline{w}_i^{z_i}\} \)
 - run GC evaluation as P1 would to get \(v' \)
 - Define vector \(\overrightarrow{Z} \) that P1 would use in equality test
 - return 1 iff \(\overrightarrow{Z} = = \overrightarrow{Z}' \)

6) receive \(g(x) \) and give it to P2.

7) if \(g(x) = = 0 \) or P2 abort, send ”abort” to ideal functionality otherwise send ”continue”.

References