
CMSC 858K — Introduction to Secure Computation November 6, 2013

Lecture 26

Lecturer: Guest Lecture from Aseem Rastogi Scribe(s): Xiao Wang

1 Summary

This is a guest lecture about knowledge inference for optimizing secure multiparty computation[1]
Given an Secure Multiparty Computation program S, we want to know for each party

P , which program variables they ”know”.
Motivation: Given this knowledge, we can optimize Secure Multiparty computation to

be more efficient.

• Knowledge Inference Algorithm: For each Party, it outputs which variable they know.

• constructive knowledge Inference Algorithm: For each Party, it outputs which variable
they know, and a program that can generate it using party’s input and output.

2 Example: 2 party 2 input median

We assume that party A and B owns x1, x2, y1, y2 respectively, s.t. x1 < x2, y1 < y2. The
binary-search-like code is as follows:

Algorithm 1: median(x1, x2, y1, y2)

1 bool a = x1 ≤ y1
2 int x3 = a?x2 : x1
3 int y3 = a?y1 : y2
4 bool d = x3 ≤ yx
5 int m = d?x3 : y3
6 return m

Traditional way of doing Secure Computation will transform the whole piece of code
into Garbled-Circuits or GMW, which is quiet large. However, in this particular case we
do not need to do secure computation for all code.

Claim 1 Given x1, x2,m, Alice can always infer values of a and d independent of y1, y2.
Similarly, given y1, y2,m, Bob can always infer values of a and d independent of x1, x2.

This can be verified in the following tree:

26-1



a = True
x3 = x2
y3 = y1

a = False
x3 = x1
y3 = y2

d = True
m = x2

d = False
m = y1

d = True
m = x1

d = False
m = y2

x1 ≤ y1 x2 > y2

x2 ≤ y1 x2 > y1 x1 ≤ y2 x1 > y2

Each run of the program will take one of the path of the tree. we can see that for bob,
d = (m 6= y1) ∧ (m 6= y2), a = m ≤ y1

3 In general

Let S be a program, y be a variable. Party A knows y if value of y only depends on its
inputs and outputs. In other word, for any two program runs R1, R2, the coincidence on
A’s input and output implies the coincidence of y.

We say a is knows if:

(x1 = x′1) ∧ (x2 = x′2) ∧ (m = m′)→ (a = a′)

We feed

Φpre ∧ (
∨
i

Φi) ∧ (x1 = x′1) ∧ (x2 = x′2) ∧ (m = m′)→ (a = a′)

into SMT to see if this is valid, where Φpre are some pre-conditions, Φi is one of the path
condition, which is a set of predicates relating the program variables.

References

[1] Rastogi, Aseem, Piotr Mardziel, Michael Hicks, and Matthew A. Hammer. ”Knowledge
inference for optimizing secure multi-party computation.” In Proceedings of the Eighth
ACM SIGPLAN workshop on Programming languages and analysis for security, pp.
3-14. ACM, 2013.

26-2


