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1 Summary

In this lecture, we introduce the primitive called Oblivious Transfer (OT). Oblivious transfer
is a fundamental primitive from both a theoretical and practical standpoint. We give the
definition of OT and present a protocol for 1-out-of-2 OT by Even-Goldreich-Lempel and
prove that it is secure.

2 Oblivious Transfer

An oblivious transfer (OT) protocol allows a sender to transmit some of his inputs to the
receiver with the guarantee that both parties do not learn more information than allowed
(i..e.) the sender learns nothing about the choices of the receiver and the receiver learns no
other inputs but those he chose to receive. In a 1-out-of-2 OT, the sender has two inputs
x0, x1 and the receiver has a choice bit b ∈ {0, 1} and learns xb at the end of the protocol
while the sender learns nothing.
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Figure 1: Oblivious Transfer

3 Oblivious Transfer Protocol

Here, we present a 1-out-of-2 OT protocol by Even-Goldreich-Lempel [EGL85]. The proto-
col uses a CPA-secure public key encryption scheme which we define below.

3.1 Public Key Encryption Scheme

A public key encryption scheme E consists of three probabilistic polynomial time algorithms
(Gen,Enc,Dec) where

• Gen is the key generation algorithm that on input 1n, where n is the security param-
eter, outputs the public key pk and the secret key sk ,
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• Enc is the encryption algorithm that on input a message m and the public key pk
outputs a ciphertext c← Encpk (m),

• Dec is the decryption algorithm that on input a ciphertext c and secret key sk outputs
the message m = Decsk (c).

It is required that for every n, every pk , sk ← Gen(1n) and every message m from the
message space, it holds that Decsk (Encpk (m)) = m.

Definition 1[CPA security] Let Xn(m)
def
= {(pk , sk) ← Gen(1n) : (pk ,Encpk (m))} and

Yn(m)
def
= {(pk , sk) ← Gen(1n) : (pk ,Encpk (0|m|))} for every m in the message space. A

public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the
ensembles {Xn} and {Yn} are computationally indistinguishable. ♦

For the security of the OT protocol, we also require that the encryption scheme have
obliviously sampleable public keys. An encryption scheme E = (Gen,Enc,Dec) has oblivi-
ously sampleable public keys if

• there exists a polynomial time algorithm Samp such that {Samp(1n)} is identically
distributed to {(pk , sk)← Gen(1n) : pk} 1

• there exists a polynomial time algorithm pkSim such that {r ← {0, 1}n; pk = Samp(1n; r) :
(pk , r)} and {(pk , sk) ← Gen(1n); r ← pkSim(pk) : (pk , r))} are computationally in-
distinguishable.

Note that standard El Gamal has obliviously sampleable public keys.

3.2 1-out-of-2 OT Protocol

Consider the following protocol π by Even-Goldreich-Lempel that requires a public key en-
cryption scheme E = (Gen,Enc,Dec).

OT Protocol

Sender(x0, x1) Receiver(b)

(pk , sk)← Gen(1n)
pk ′ ← Samp(1n)
pk b = pk , pk1−b = pk ′

�
pk0, pk1

c0 = Encpk0
(x0), c1 = Encpk1

(x1)
c0, c1 -

xb = Decskb
(cb)

Theorem 1 If the encryption scheme E is CPA-secure and has obliviously sampleable public
keys, then protocol π 1-privately computes OT.

1This condition alone is not sufficient as Samp(1n) could be Gen(1n).
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Proof Let us first prove security against the sender. We need to show that there exists
S such that {S(1n, x0, x1, z)} and {Viewπ

sender(1
n, x0, x1, b, z)} are computationally indis-

tinguishable. Let us construct the following simulator S that runs as follows on input the
security parameter n and strings x0 and x1.
S(1n, x0, x1):

1. Run (pk0, sk0)← Gen(1n) and (pk1, sk1)← Gen(1n)

2. Choose randomness r0, r1 for the two encryptions.

3. Output (pk0, pk1, r0, r1, x0, x1).

Consider the view of the sender in the protocol π. The sender has inputs 1n, x0, x1 and
does not receive any output.
Viewπ

sender(1
n, x0, x1):

1. The sender receives (pk b, sk b)← Gen(1n) and pk1−b ← Samp(1n),

2. the randomness r0, r1 for the two encryptions.

3. Hence, the sender’s view consists of (pk0, pk1, r0, r1, x0, x1).

The public and the secret key pair (pk b, sk b) corresponding to the choice bit b is iden-
tically distributed in both cases above as they are both generated by running the key
generation algorithm of the public key encryption scheme. Note also that pk1−b is identi-
cally distributed in both cases as well. This is because of the fact that we assume that E
is a public key encryption scheme that has obliviously sampleable public keys and hence
Samp(1n) and Gen(1n) are identically distributed.

Let us now prove security against the receiver for the OT protocol. We construct the
following simulator S that runs as follows on input the security parameter n, choice bit
b and string xb. (Note that the simulator receives both the input and the output of the
receiver as its inputs.)
S(1n, b, xb):

1. Choose randomness rGen and compute (pk b, sk b)← Gen(1n).

2. Run (pk1−b, sk1−b)← Gen(1n) and compute rSamp ← pkSim(pk1−b).

3. Set cb ← Encpkb
(xb) and c1−b ← Encpk1−b

(0n).

4. Output (rGen, rSamp, c0, c1, b, xb).

Consider the view of the receiver in the protocol π. The receiver has inputs 1n, b and
receives output xb.
Viewπ

receiver(1
n, b):

1. The receiver chooses randomness rGen, rSamp and computes (pk b, sk b)← Gen(1n; rGen)
and pk1−b ← Samp(1n; rSamp).
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2. The receiver receives cb = Encpkb
(xb), c1−b = Encpk1−b

(c1−b).

3. Hence, the receiver’s view consists of (rGen, rSamp, c0, c1).

In order to prove security against the receiver, we have to show that S(1n, b, xb) and
Viewπ

receiver(1
n, b) are computationally indistinguishable. Consider the following hybrid:

Hybrid(1n, b):

1. Choose randomness rGen and compute (pk b, sk b)← Gen(1n; rGen).

2. Compute pk1−b ← Gen(1n) and run pkSim to obtain rSamp ← pkSim(pk1−b).

3. Receive ciphertexts cb = Encpkb
(xb), c1−b = Encpk1−b

(c1−b).

4. Output (rGen, rSamp, c0, c1).

By definition of the algorithm pkSim, the distributions Viewπ
receiver(1

n, b) and Hybrid(1n, b)
are identical. For distributions Hybrid(1n, b) and S(1n, b, xb), the difference is that we re-
placed the encryption of x1−b with that of 0n. The proof that these two distributions
are computationally indistinguishable follows by reduction from the CPA security of the
encryption scheme. We sketch the reduction below.

Fix some distinguisher D that can distinguish distributions Hybrid(1n, b) and S(1n, b, xb)
with probability ε. Construct distinguisher D′(1n, b, x0, x1) for the CPA security of the en-
cryption scheme as follows. When D′ receives the public key pk and the challenge ciphertext
c from the CPA security experiment where c is either the encryption of x1−b or 0n, D′ does
the following:

1. (pk b, sk b)← Gen(1n; rGen)

2. rSamp ← pkSim(pk)

3. cb = Encpkb
(xb); c1−b = c

4. Output D(rGen, rSamp, c0, c1)

If c = Encpk (x1−b), then the view of D is distributed identically to Hybrid(1n, b). If
c = Encpk (0n), then the view of D is distributed identically to S(1n, b, xb). By the CPA
security of the encryption scheme, we have that the probability of success for any distin-
guisher D′ is negligible. This implies that the probability of success of D is negligible as
the probability of success of D is exactly equal to the probability of success of D′. This im-
plies that distributions Hybrid(1n, b) and S(1n, b, xb) are computationally indistinguishable.
Hence, we have that distributions Viewπ

receiver(1
n, b) and S(1n, b, xb) are computationally in-

distinguishable.
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